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1 Introduction

When making decisions for a society, preferences of members of society should be taken

into account. If a social planner manages to elicit preferences of individuals, s/he then

needs to aggregate these preferences in order to reach a social preference. The question of

aggregating possibly conflicting preferences of individuals, and deciding how to balance

them, is a fundamental question in social choice.

Preferences of members of society can take many forms. In many domains, for

instance when considering preferences over bundles of goods, preferences are typically

ordinal. Namely, the only information regarding preferences is how alternatives are

ranked, without any way to measure the extent to which one alternative is better than

another, or to compare tradeoffs between alternatives.

When preferences are ordinal, and there is no notion of strength of preference,

aggregation is difficult. As established by Arrow in his famous impossibility theorem [2],

it is impossible to aggregate preferences while abiding by a set of seemingly reasonable

aggregation principles. Conceptually, part of the problem is that without knowing

anything about how strongly individuals prefer one alternative to another, it is difficult

to weigh the advantages of one social alternative over another in a consistent manner.1

As oppose to ordinal preferences, cardinal preferences convey strength of preference

over alternatives. They thus facilitate interpersonal comparisons, allowing to balance

conflicting tastes of individuals by give and take based on how individuals quantify

tradeoffs between alternatives. And indeed, contrary to Arrow’s impossibility theorem

for ordinal preferences, Harsanyi [8] showed how for cardinal preferences, of both the

social planner and members of society, aggregation takes on a simple form - as long as

the social planner adheres to the widely accepted Pareto principle, aggregation must be

utilitarian. That is, social decisions are represented by a weighted sum of the individuals’

cardinal utilities. The social planner still needs to choose weights, and this is a crucial

step in the comparison of benefits and harms for the different members of society.

1We should be careful here, though. Schmeidler and Kalai [10] showed that even with cardinal
preferences, a cardinal version of IIA that was suggested by Samuelson leads again to impossibility
(combined with basic assumptions). In the spirit of the original IIA, this version considers in each
application two relative distances between alternatives. However when preferences are cardinal a lot of
data is lost by considering only some relative distances without comparing them, for example, to some
benchmark distance.
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Harsanyi’s result is agnostic about this issue. Yet, under cardinality of preferences

the formation of a social preference is considerably simplified: it is reduced to the choice

of specific weights for the individual utilities that are mutually calibrated.2

Cardinal preferences are typically derived when observed preferences are defined on a

rich domain of alternatives, by imposing appropriate requirements on them. The key to

this derivation is that the domain of alternatives is composed of (at least) two separable

components. For instance, tradeoffs can be measured when alternatives are composed

of both prizes and probabilities, two conceptually different components. When these

two components are regarded separately, an appropriate set of axioms yields cardinal

preferences. With cardinal preferences the tradeoff between two prizes is represented by

the difference between their utilities.

Similarly, cardinal preferences are often derived based on alternatives that are composed

of prizes and states of nature, as in Savage [16], or of prizes and time, with appropriate

sets of assumptions. Both states of nature and time can be employed in a similar manner

to probabilities in order to measure tradeoffs, which translate to utility differences.

To obtain simple, utilitarian aggregation of preferences under the Pareto assumption,

the preferences of both the social planner and members of society need to be cardinal.

There are several points where that could go wrong.

A first obstacle might exist in decision problems where the alternatives under consideration

do not include a distinct component such as probabilities or the like, or if they do,

preferences may not satisfy separability over that component. For example, alternatives

may be bundles of goods without separability between different goods. A second problem

might arise even when appropriate separability is satisfied for individual preferences. In

this case, as individual and social preferences are normatively and positively different,

separability may not be applicable for society. Moreover, even if alternatives are lotteries,

for instance, and individual preferences take an expected utility form so that tradeoffs

with respect to probabilities can be derived, these tradeoffs may not be relevant for

the social decision. An individual may quantify the tradeoff between two prizes in a

particular way when weighing it against probabilities, but may not feel the same when

this tradeoff is used to balance her/his preferences with respect to those of others.

2 Various methods have been proposed in the literature to resolve relative scaling of individuals’
cardinal utilities. See, for example, Fleurbaey and Zuber [7] and the discussion and references therein.
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In this paper we consider preferences of individuals and a social planner on a general

set of alternatives, without assuming that it contains a separable element such as

probabilities, time, etc. The primitives in our model are an abstract set of alternatives, a

society composed of a finite number of individuals, and a family of preference relations,

one per each group in society (single members, the entire society, and everything in

between).3 The interpretation for each of these relations depends on the group. Whenever

a group is organic, in that it consists of individuals who make joint decisions of their

own accord (e.g., when the group is a household), then the primitive preference relation

per this group is interpreted as the joint preference relation that group members form

together voluntarily, without interference of the social planner. The social planner is

assumed to accept the autonomous preferences of organic groups, just as s/he accepts

those of individuals. For other groups (among them the entire society), the relation

is interpreted as the social planner’s preference for these groups. From a normative

point of view, if the social planner accepts the norms suggested by our axioms, our

results provide guidelines as to how s/he should construct these preferences (including

the preference of the entire society).

We formulate conditions on the family of preference relations that yield the existence

of a corresponding family of cardinal utilities, one per each group in society. These

utilities are utilitarian, so that for every partition of a group in society into sub-groups,

the utility for this group is a weighted sum of the sub-groups’ utilities. In particular it

is implied that for each group in society, the preference for this group is represented by

a utilitarian sum of the cardinal utilities of the members of the group.

Cardinality of preferences in our model is the result of eliciting consistent social

tradeoffs, that are extracted from compromises that individuals make with one another.

That is, the component with respect to which tradeoffs of individual preferences are

measured is just other individuals. These tradeoffs are therefore inherent to the social

question, derived precisely from the type of problems for which they are to be used. For

example, consider a household consisting of two individuals. The individuals have their

own personal preferences over alternatives, and in addition there is the preference of

the household, expressing the decisions made by the individuals together. Imagine that

3That is, we consider a single, fixed profile of preferences, as in Harsanyi [8], and not a universal
rule over multiple profiles with consistency requirements across societies, as in Arrow [2].
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the individuals want to go to the mall, and need to decide whether to walk or take the

bus. If each of the individuals personally prefers taking the bus then they will probably

prefer to take it together. However, if they disagree, one preferring the bus and the

other walking, they will have to compromise. We look at such compromises, comparing

those that individuals are willing and unwilling to make, and employ them for measuring

strength of preference.

The motivation for our model is twofold. First, suppose that a social planner wishes

to aggregate the preferences of members of society, and finds the conditions that we

formulate appealing (this would require the social planner to accept the conditions when

applied to the preferences of every group in society, not only the entire society). In

light of our result, the social planner can deduce that all preferences are represented

by cardinal utilities, where each group utility is a utilitarian sum of the utilities of its

subgroups, and specifically of its members. The social planner then needs to figure out

which cardinal utilities to use.

The second element of our model is a characterization of the circumstances under

which a social planner may elicit cardinal preferences of individuals and organic groups,

and a utilitarian representation thereof, based on consistent social tradeoffs that members

of society voluntarily make. Derivation of these tradeoffs relies on an assumption that

all individuals are engaged in interactions with others, where they need to reach joint

decisions. For example, individuals may be organized in households, and need to make

decisions as a household, so that members of a household have their own personal

preferences and on top of that there is a preference of the household.4 For instance,

we may see one of the household members walking to the mall when alone, but taking

the bus with the other household member.

Whenever the preferences of individuals and their organic groups conform to our

conditions, then the preferences of individuals can be represented by cardinal utilities,

and the preferences of any organic group is represented by a weighted sum of the cardinal

utilities of its members. The social planner may observe these preferences and elicit the

implied cardinal utilities.

After eliciting the cardinal utilities representing the preferences of individuals and

4organic groups can overlap, in which case our assumptions require consistency in the compromises
that individuals are willing to make with their peers in different organic groups, in that the social
tradeoffs that these compromises convey are the same across groups.
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their organic groups, these can be used in forming the cardinal utilities representing the

preferences of all other, non-organic groups (including the entire society). If the social

planner accepts our conditions, chiefly Pareto and consistency of social tradeoffs, then

the preferences of any non-organic group is represented by a weighted sum of the cardinal

utilities of its organic sub-groups, thus in particular by a weighted sum of the cardinal

utilities of the group’s members. In this utilitarian sum, the weights assigned to any

organic sub-group are subject to the social planner’s discretion, and should reflect value

judgments on the planner’s part. However, within any organic sub-group, the weights on

the utilities of individuals are determined by their compromises within the sub-group,

namely by the social tradeoffs that they themselves are willing to make with their peers

in the sub-group.

Altogether we model societies where members make consistent tradeoffs when compromising

with others, and the social planner is a utilitarian whose utilitarian social welfare

function hinges on those social tradeoffs that members willingly make. Contrary to

other social choice models that employ cardinal preferences, cardinality in our model

is the direct result of social interaction, and not of assumptions made separately on

each preference (as is the case if, for example, preferences are assumed to be expected

utility). The price to pay is a primitive which is more complicated than in most models

of social choice of that kind - we suppose a family of preference relations, one per each

group in society, rather than only individual preferences and a preference for the entire

society. For organic groups, the preferences assumed are supposed to be preferences that

individuals voluntarily form. For non-organic groups, the social planner needs to be able

to apprehend and assess conditions that apply to proper sub-groups and not only to the

entire society.

It should be noted that while the representation we characterize will hold whenever

preferences abide by our conditions, its normative appeal depends on our interpretation

of preference reversals within organic groups. We interpret such reversals as resulting

from willful compromises that individuals make. We contend that tradeoffs that result

from compromises with significant others express how individuals voluntarily take into

account others’ preferences, and as such are a relevant construct for social decisions.

However, if tradeoffs as we measure them are a result of other dynamics within organic

groups, for example an excess bargaining power of one of the members, or if individuals
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are unaware of the true preferences of their peers or misperceive them, it may not be

normatively warranted to take those tradeoffs into account in a social decision. Our

model is thus adequate for use when alternatives and groups are such that the social

planner can safely assume that joint decisions result from willful compromises between

individuals, where these individuals know each other’s preferences when making joint

decisions. For instance, think of spouses who need to decide whether to walk or take the

bus when going together to the mall. They discuss the matter, become aware of each

other’s preferences, and in case there’s a conflict of preferences one of them compromises.

Utilitarianism was criticized, for example by Robbins [14] and Samuelson [15], for

its assumption that utilities of individuals can be compared and weighed relative to one

another. According to this criticism, it is meaningless to compare satisfaction levels of

different individuals hence meaningless to aggregate utilities in the form of a weighted

sum of specific utility indices. Rather, only ordinal preferences should be taken into

account when reaching social decisions.

In our model we consider a general set of alternatives, and each preference, when

considered independently, is merely assumed ordinal. Cardinality of preferences emerges

only after individuals are placed in a social context, based on assumptions that regard

their joint decisions in their organic groups. The compromises that these joint decisions

require express interpersonal comparisons that individuals voluntarily perform. Thus,

relative weights on utilities of individuals that belong to the same organic group are

endogenously determined by the individuals themselves through the compromises that

they make with one another, rather than exogenously set by the social planner. Comparison

of the utilities of individuals that do not belong to the same organic group is left to the

discretion of the social planner and not determined within the model (see Footnote 2).

In special cases, with enough intersection between groups, all weights will be determined

by individuals’ voluntary choices (e.g., in the simple case where there is one individual

with which everybody else forms organic groups).

Our result relies heavily on the concept of tradeoffs between outcomes. Comparing

tradeoffs between outcomes as a technique for extracting cardinal utility originated

in Thomsen [17], further developed in Blaschke and Bol [3] and Debreu [5], and was

thoroughly investigated in Krantz, Luce, Suppes and Tversky [12] (in a form termed

standard sequences). Tradeoffs as we define and employ here were defined and extensively
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studied by Wakker, see for example [18] and [11].

Technically, in the special case where alternatives are allocations of bundles and

individuals care only about their personal allocated bundles, only basic assumptions

are required to obtain that there exist cardinal individual utilities, such that the social

planner’s preference for the entire society is the sum of those individual utilities. Still,

with only those basic assumptions the individual cardinal utilities do not convey any

meaningful notion of strength of preference, while in our model cardinality of the utilities

stems from the social tradeoffs that individuals are willing to make. Moreover, our

setup allows for a general set of alternatives, subject only to connectivity constraints,

and so can accommodate a variety of social choice problems. Even when allocations

are considered, our setup can describe individuals that care about more than their

personally allocated bundles, accommodating, for example, public goods and other-

regarding preferences.

We mention two related papers that address the above question of interpersonal

comparisons by characterizing both cardinality of preferences and a utilitarian social

decision.

Piacquadio [13] starts off with ordinal preferences, extracts cardinal utilities based

on social considerations, and aggregates them into a utilitarian social preference. To

obtain cardinal preferences Piacquadio [13] employs conditions that express fairness

considerations on the part of the social planner, translated in the representation to

an endogenous choice of expanding opportunity sets. These opportunity sets reflect a

moral stance of the social planner, derived from the planner’s preferences. Consequently,

differences of individual utility values express the tradeoffs in their well-being levels as

these are perceived by the social planner based on her/his concept of fairness. By

setting forth these fairness considerations, Piacquadio’s model delivers as part of the

cardinal utilities also the relative scaling of individuals in society, resolving interpersonal

comparisons according to the value judgments derived from the social planner’s preferences.

The approach in our paper is different from Piacquadio’s in that in our paper the

cardinality of individual utilities expresses the individuals’ own strength of preference,

extracted from the compromises that they make with significant others. Thus differences

of utility values in our model represent tradeoffs in well-being as perceived by individuals

themselves and not by the social planner, where these tradeoffs are inherently related to
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the social context. The additional information that we employ for that derivation are

more demanding primitives - a preference for every sub-group in society, not only for

individuals and the entire society. We obtain a social planner who is a utilitarian for

every such sub-group, having at her/his disposal cardinal utilities to be aggregated. For

individuals that belong to the same organic group, the relative scaling of their utilities

is not at the discretion of the social planner, but extracted from their preferences and

that of their mutual organic group. However, relative scaling of utilities for individuals

that are not members of the same organic group, so in fact scaling of organic groups

relative to one another, is undetermined by our model.

Another method for attributing cardinal meaning to preferences and performing

interpersonal comparisons, suggested by Edgeworth [6], is by use of just noticeable

differences. Angenziano and Gilboa [1] recently formulated an axiomatic foundation

of that idea, using just noticeable differences to calibrate the wellbeing of individuals.

The representation of personal preferences and their calibration is motivated by theories

of psychological perception, and by the social planner’s contention that just noticeable

differences perceived by different individuals should obtain equal value.

The paper is organized as follows. Section 2 explains the setup that we use, and

details the assumptions that we impose on preferences. Section 3 contains our result,

with a special case presented in Subsection 3.1. The proof of the special case can be

found in an online appendix5, and all other proofs appear in Section 4.

2 Setup and assumptions

Suppose a non-empty set of outcomes, X, and a society of individuals N = {1, . . . , n},
2 ≤ n ∈ N. For every nonempty subset of individuals T ⊆ N there is a binary

relation %T over X. The asymmetric and symmetric parts of each of these relations

are respectively denoted by �T and ∼T . For T = {i} we write %i,�i, and ∼i. An

outcome x ∈ X is called unanimously minimal if for every y ∈ X, and every i ∈ N ,

y %i x. An outcome x ∈ X is called unanimously maximal if for every y ∈ X, and every

i ∈ N , x %i y.

The following structural assumption delineates the type of problems that we address,

5https://shirialon.weebly.com/uploads/2/3/9/9/23990200/lehreralon_cardinality_and_

utilitarianism_online_appendix.pdf
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characterized by two topological assumptions. These will be satisfied, for example, when

alternatives are bundles in RL+, and all indifference classes for every relation %T are

connected.

A0. Structural assumption.

(a) X is a connected topological space.

(b) For every nonempty T ⊆ N and every x ∈ X, the indifference class

{y ∈ X | y ∼T x} is connected.

The first assumption contains a set of basic requirements, stating that each relation

%T is a continuous and non-degenerate complete order.

A1. Non-degenerate Continuous weak orders. For every nonempty T ⊆ N the

relation %T is a non-degenerate, continuous weak order. That is,

(a) For any x, y ∈ X, either x %T y or y %T x (completeness)

(b) For any x, y, z ∈ X, if x %T y and y %T z then x %T z (transitivity)

(c) For every x ∈ X the sets {y ∈ X | y %T x} and {y ∈ X | x %T y} are closed

(continuity)

(d) There are xT , yT ∈ X such that xT �T yT (non-degeneracy)

The following is the first Pareto condition out of the two that we employ in our

characterization. This is a standard, strong Pareto condition, applied to the family of

relations %T .

A2. Extended Pareto. For any two outcomes x, y ∈ X and for any two nonempty,

disjoint subsets T,G ⊂ N , if x %T y and x %G y then x %T∪G y.

Furthermore, if any of the two antecedent conditions holds strictly, then the conclusion

is strict as well.
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Repeated application of Extended Pareto yields that whenever for a partition of a

group T the preferences per each partition element support a ranking, then so does the

preference for T . In particular, under Extended Pareto, if x∗ is unanimously minimal,

then for every y ∈ X and every nonempty subset of individuals T ⊆ N , y %T x∗.

Similarly, if x∗ is unanimously maximal, then for every y ∈ X and every nonempty

subset of individuals T ⊆ N , x∗ %T y.

Agreed Improvement, our next axiom, is a general version of monotonicity. For

preferences over bundles in RL+ it is enough to require that all preferences be monotone.

A3. Agreed Improvement For any two nonempty, disjoint T,G ⊂ N ,

(a) For every x, y ∈ X that are not unanimously maximal, there is an outcome z∗ ∈ X
such that z∗ �G x and z∗ �T y.

(b) For every x, y ∈ X that are not unanimously minimal, there is an outcome z∗ ∈ X
such that x �G z∗ and y �T z∗.

Diversity, our fourth assumption, is a richness condition. If alternatives are bundles

in RL+, and under the basic assumptions A1 and A3, it will fail if there are two disjoint

groups that have an identical indifference class. That is, it will fail if there are two

disjoint groups T and G and a bundle x such that the indifference classes of x under %T

and under %G merge completely (if they partially merge the axiom will still be satisfied).

A4. Diversity of Tastes. For any two nonempty, disjoint subsets T,G ⊂ N , and

for every x ∈ X which is neither unanimously maximal nor unanimously minimal, there

exists y ∈ X such that either x �G y and y �T x, or, x �T y and y �G x.

Next we define social tradeoffs, the central construct in our paper that is used to

extract cardinality of preferences. The basic idea of social tradeoffs is simple. Consider

two individuals, 1 and 2, each having a personal preference over the general set of

alternatives, and both having a joint preference, representing their decisions together.

Suppose that 2 is personally indifferent between two alternatives x and z, as well as

between alternatives y and w. This would mean that as far as 2 is concerned, the

comparison between x and y is the same as the comparison between z and w.
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Now inspect the joint preference of 1 and 2. Say that, together, 1 and 2 prefer x over

y, and prefer w over z. We interpret such a situation as a sign that for 1, the tradeoff

between x and y is larger than the tradeoff between z and w.

To see the intuition in this interpretation assume for the sake of the explanation

that 2 prefers y to x, hence also w to z. As both comparisons are identical for 2, we

conclude that the difference in the joint ranking is the result of 1’s preference. The

joint preference complies with 2 in ranking w above z, but overturns 2’s preference with

regard to x and y. It must therefore be that 1 prefers x over y to a greater extent than

it prefers (if at all) z over w. Under these circumstances we thus conclude that for 1,

the tradeoff between x and y is larger than the tradeoff between z and w, denoting it

by x	 y �1 z 	 w. An analogous measurement can be made when individuals 1 and 2

are replaced by groups.

Social tradeoffs are defined according to this rationale for every nonempty strict group

in society. The definition hinges on preferences, stating that indifferent outcomes yield

the same tradeoffs. That is, strength of preference, that is manifested in comparisons of

tradeoffs, is defined as an attribute of indifference classes. The definition is followed by

an assumption that guarantees its consistency.

Definition 1. For outcomes x, y, z, w ∈ X and a nonempty subset T ⊂ N , write

x	 y �T z 	 w

whenever there exist outcomes x′, y′, z′, w′ ∈ X such that

x ∼T x′, y ∼T y′, z ∼T z′, w ∼T w′,

and a nonempty subset G ⊆ N , G ∩ T = ∅, such that,

x′ ∼G z′ , y′ ∼G w′ ,

x′ %T∪G y′ and w′ %T∪G z′ . (1)

If it is furthermore satisfied that x′ ∼T∪G y′ and w′ ∼T∪G z′ , write x	y 'T z	w ,

otherwise, x	 y �T z 	 w .
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Figure 1 illustrates a measurement of tradeoffs for Individual 1 using the personal

preferences of Individual 2 and the joint preferences of the two individuals.

Figure 1: Definition of social tradeoffs

The tradeoffs between the blue indifference curves of Individuals 1 are measured with the aid of
Individual 2’s red indifference curves, and the individuals’ joint preference that is sketched in green.
The two individuals’ personal ranking of x vs. y and of z vs. w is opposite. The outcomes satisfy,
x ∼2 z, y ∼2 w, x %{1,2} y, and w %{1,2} z. Hence we conclude that for Individual 1 the tradeoff
between x and y is higher than the tradeoff between z and w.

For individuals, as well as for organic sub-groups of organic groups (namely, sub-

groups reaching joint decisions voluntarily, and further reaching joint decisions with a

larger group voluntarily) it is understood that these are the tradeoffs that the individuals

and the organic sub-groups willingly make when compromising with their peers in

order to reach joint decisions. For non-organic groups these tradeoffs are interpreted

as exhibited by the social planner.

The assumption that follows guarantees that the definition above is consistent in

two respects. First, tradeoffs should be the same no matter where on the indifference

classes of a group they are measured. This is illustrated in Figure 2, which shows that

the ranking of tradeoffs between Individual 1’s indifference curves (in blue) should be

the same whether they are measured with the aid of Individual 2’s continuous or broken
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red indifference curves.

The second type of consistency required by the assumption is across groups. If a

group exhibits some ranking of tradeoffs when measured through the joint preference

with another group, then the same ranking of tradeoffs will hold if measured using a

different group (this will be expressed similarly to Figure 2, with the continuous and

broken red lines representing preferences of different groups). This results that tradeoffs

derived from voluntary compromises of individuals and sub-groups are consistent across

organic groups to which they belong, and that the social planner respects those tradeoffs

when constructing preferences of non-organic groups. Note that for the entire society

there is no notion of tradeoffs, as the entire society has no individuals outside of it to

compromise with.

A5. Consistency of Social Tradeoffs. Let T,G,H ⊆ N be nonempty subsets of

individuals such that T∩G = T∩H = ∅. Suppose that for outcomes x, y, z, w, x′, y′, z′, w′ ∈
X it holds that:

(a) x ∼T x′, y ∼T y′, z ∼T z′, and w ∼T w′

(b) x ∼G z and y ∼G w

(c) x′ ∼H z′, and y′ ∼H w′

Then x %T∪G y , w %T∪G z , and y′ %T∪H x′ imply w′ %T∪H z′ .

Our last assumption is an indifference Pareto assumption concerning tradeoffs. Within

the axiom, the conditions that apply to tradeoff comparisons are satisfied only when the

ranking of tradeoffs can be established as per Definition 1. When the conditions are

satisfied, namely when two tradeoffs are indifferent according to two disjoint groups, then

it cannot be that their union strictly ranks these tradeoffs. That is, either the tradeoffs

are indifferent according to the union as well, or they simply cannot be compared.

A6. Tradeoff Indifference-Pareto. Let T,G ⊂ N be nonempty, disjoint subsets
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(a) The tradeoffs between the blue indifference
curves of Individuals 1 are the same whether
measured through Individual 2’s continuous or
broken red indifference curves.

(b) If the continuous green preferences hold
then the dotted green preference should hold
as well.

Figure 2: Consistency of tradeoff measurement

such that T ∪G 6= N , and let x, y, z, w ∈ X be outcomes. Then,

x	 y 'T z 	 w and x	 y 'G z 	 w =⇒ ¬(x	 y �T∪G z 	 w) .

3 Result

Definition 2. Two functions, UG, UT : X −→ R, are said to be jointly improvable, when

(a) If neither of x, y ∈ X obtains the minimum of both UG and UT over X, then there

exists z∗ ∈ X such that,

min (UG(x), UG(y)) > UG(z∗) , min (UT (x), UT (y)) > UT (z∗) .

(b) If neither of x, y ∈ X obtains the maximum of both UG and UT over X, then there

exists z∗ ∈ X such that,

max (UG(x), UG(y)) < UG(z∗) , max (UT (x), UT (y)) < UT (z∗) .

Definition 3. Two functions, UG, UT : X −→ R, are said to be diversified, if whenever
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x ∈ X neither obtains miny∈X UG(y), miny∈X UT (y), maxy∈X UG(y), nor maxy∈X UT (y),

then there exists y ∈ X such that either UG(y) > UG(x) and UT (x) > UT (y), or

UG(x) > UG(y) and UT (y) > UT (x).

The following is our main theorem.

Theorem 1. Let {%T}∅6=T⊆N be binary relations on X. Assume that A0 holds. Then

the following two statements are equivalent:

(i) {%T}∅6=T⊆N satisfy A1 through A6.

(ii) There exist continuous, non-constant utility functions {UT}∅6=T⊆N such that UT

represents %T , and for every pair of nonempty, disjoint subsets of individuals

G, T ⊂ N ,

UG∪T = λG∪TG UG + λG∪TT UT , for λG∪TG , λG∪TT > 0 .

Furthermore, {UT}∅6=T⊆N are jointly cardinal6, and for every nonempty and disjoint

G, T ⊂ N , UG and UT are diversified and jointly improvable.

The proof appears in Section 4.

Corollary 1. Let {%T}∅6=T⊆N be binary relations on X. Assume that A0 holds, and

that these relations satisfy A1-A6. Then there are jointly cardinal utilities {Ui}i∈N , such

that for every nonempty T ⊆ N , %T is represented by,

UT =
∑
i∈T

λTi Ui , λTi > 0 .

The corollary is easily obtained by applying the theorem over and over again to T ,

partitioning T into {i} and T \ {i} for i ∈ T , then partitioning T \ {i} into {j} and

T \{i, j} for j ∈ T \{i}, and so on. In the same manner, for every partition {T1, . . . , Tm}

of T , UT =
m∑
`=1

λTT`UT` , for λTT` > 0.

6Namely, if there are functions {ÛT }∅6=T⊆N representing {%T }∅6=T⊆N in the same additive manner,

then there are θ > 0 and ξT for every ∅ 6= T ⊆ N , such that ÛT = θUT + ξT .
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3.1 A special case

It may be that G is more influential relative to H when G and H are together with

members of T than when G and H are with T ′. We cannot even say that there is

monotonicity of the influence with respect to set inclusion, namely that if we consider

nonempty, pairwise disjoint subsets G,H, T ⊂ N , then the relative influence of T is

smaller when T is with G∪H than when T is with G alone, in that λG∪H∪TT /λG∪H∪TG∪H <

λG∪TT /λG∪TG . Decreasing influence of T with respect to set inclusion may be violated when

utilities are linearly dependent. For a threesome of disjoint subsets G,H and T , the

utilities UG, UH and UT may be linearly dependent, in which case the coefficient λG∪H∪TT

may be relatively larger than λG∪TT , violating the above inequality, as UT encapsulates

some of UG and UH .

To impose more structure on the coefficients, and obtain a representation where the

relative influence of any two subsets G and H is the same, independent of the set to

which G and H join, Agreed Improvement (A3) is replaced by the following Unanimous

Improvement assumption, and two additional assumptions, stated below, are added.

A3’. Unanimous Improvement

(a) For every x, y ∈ X that are not unanimously maximal, there is an outcome z∗ ∈ X
such that z∗ �i x and z∗ �i y for every i ∈ N .

(b) For every x, y ∈ X that are not unanimously minimal, there is an outcome z∗ ∈ X
such that x �i z∗ and y �i z∗ for every i ∈ N .

(c) If z∗ �i z∗ for every i ∈ N , then there is z ∈ X such that z∗ �i z �i z∗ for every

i ∈ N .

The following axiom implies that the relative weights of utilities UH and UG are the

same within the utility of any group that contains them. For that, the axiom compares

tradeoffs across different groups. Essentially it states that when adding the tradeoff

between z and y according to H when measured relative to G, to the tradeoff between y

and x according to H when measured relative to T , we get the tradeoff between z and x

according to H, measured relative to G∪T . The last tradeoff is a sum of the two former
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ones, as the relative weights of UH and UG are the same within the utilities UH∪G and

UH∪G∪T (and the same for UH and UT ).

The way this is expressed in the axiom is through comparison to tradeoffs between

outcomes x∗ and x∗. The first tradeoff, relative to G, exactly balances that between

x∗ and x∗ according to G, and the second, relative to T , exactly balances the tradeoff

between x∗ and x∗ according to T . To state additivity of those tradeoffs, the axiom

employs outcomes x′, z′ that exhibit equivalent tradeoff to that of x and z according to

H, and equivalent tradeoff to that of x∗ and x∗ according to G ∪ T .

A7. Constant Relative Social Influence. Let G, T,H ( N be three non-empty,

pairwise disjoint groups of individuals, and x, y, z, x′, z′, x∗, x∗ ∈ X outcomes such that,

x	 y 'G x∗ 	 x∗ and x ∼G∪H y ,

y 	 z 'T x∗ 	 x∗ and y ∼T∪H z .

Then if z′, x′ ∈ X satisfy,

x′ 	 z′ 'G∪T x∗ 	 x∗ and x′ 	 z′ 'H x	 z ,

then x′ ∼G∪T∪H z′.

Lastly, assumption A8 below characterizes a social preference that itself has cardinal

content. Within the assumption, y is identified as the midpoint between x and z for two

groups that partition the entire society (T and N \T ). This midpoint is interpreted as a

midpoint for society, in that if another threesome of outcomes x′, y′, z′ that is preference-

equivalent according to the entire society satisfies that y′ is a midpoint for a group in

society, then it also must be perceived as the midpoint for the rest of society.

A8. Consistency of Societal Middle Ground. Let T,G ( N , and x, y, z ∈ X

outcomes such that

x	 y 'T y 	 z and x	 y 'N\T y 	 z .
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If x′, y′, z′ ∈ X satisfy x′ ∼N x, y′ ∼N y, and z′ ∼N z, then x′ 	 y′ 'G y′ 	 z′ implies

x′ 	 y′ 'N\G y′ 	 z′.

Before stating the result for the special case, another definition is required.

Definition 4. Functions, u1, . . . , um : X −→ R, m ∈ N, are said to be unanimously

improvable, when

(a) If neither of x, y ∈ X obtains the minimum of all ui over X, i = 1, . . . ,m, then

there exists z∗ such that min (ui(x), ui(y)) > ui(z∗) for every i = 1, . . . ,m.

(b) If neither of x, y ∈ X obtains the maximum of all ui over X, i = 1, . . . ,m, then

there exists z∗ such that max (ui(x), ui(y)) < ui(z
∗) for every i = 1, . . . ,m.

(c) If ui(z
∗) > ui(z∗) for every i = 1, . . . ,m, then there is z ∈ X such that ui(z

∗) >

ui(z) > ui(z∗) for every i = 1, . . . ,m.

Under the extended set of axioms we can prove the following representation theorem.

The proof is available as an online appendix.7

Theorem 2. Let
(
%T
)
T⊆N be binary relations over X, and assume that A0 holds. Then

the following two statements are equivalent:

(i) The relations satisfy A1,A2,A3’, and A4-A8.

(ii) There exist continuous utility functions u1, . . . , un over X, such that for each

nonempty T ⊆ N , %T is represented by,

UT =
∑
i∈T

ui .

Furthermore, the utilities ui are jointly cardinal and unanimously improvable, and

for every nonempty and disjoint G, T ⊂ N , UG and UT are diversified.

7https://shirialon.weebly.com/uploads/2/3/9/9/23990200/lehreralon_cardinality_and_

utilitarianism_online_appendix.pdf
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The more specific representation is simpler in its form. However when this specialized

representation is in place, links between utilities of individuals in a group are restricted

in the following manner: the relative influence of agents j and k is the same in the utility

of every group to which they both belong, and moreover, within their joint utility U{j,k},

their relative influence is determined by the relative influence of i and j within U{i,j},

and the relative influence of i and k in U{i,k}. These connections place restrictions on the

type of voluntary preferences of organic groups that the model is able to accommodate,

as well as on the social planner’s flexibility to set weights on individuals’ utilities that

depend on the group under consideration.

4 Proof of Theorem 1

We start with the simpler direction.

4.1 Necessity: the axioms hold

Suppose there exist continuous utility functions {UT }∅6=T⊆N over X as in (ii) of the theorem.

Assumptions A1 and A2 immediately follow.

Agreed Improvement (A3) and Diversity of Tastes (A4) follow from the supposition that

the corresponding UG and UT are jointly improvable and diversified.

To prove that Consistency of Social Tradeoffs (A5) holds let T,G,H ⊆ N be nonempty

subsets of individuals such that T ∩G = T ∩H = ∅, and x, y, z, w, x′, y′, z′, w′ ∈ X outcomes,

such that,

(a) x ∼T x′, y ∼T y′, z ∼T z′, and w ∼T w′ ,

(b) x ∼G z and y ∼G w ,

(c) x′ ∼H z′, and y′ ∼H w′ .

Suppose that x %T∪G y , w %T∪G z , and y′ %T∪H x′ . Then, expressing those preference

relationships through the utilities representations,

(a’) UT (x) = UT (x′), UT (y) = UT (y′), UT (z) = UT (z′), and UT (w) = UT (w′) ,

(b’) UG(x) = UG(z), UG(y) = UG(w) ,

(c’) UH(x′) = UH(z′), UH(y′) = UH(w′) , and
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(d’) λG∪TT UT (x) + λG∪TG UG(x) ≥ λG∪TT UT (y) + λG∪TG UG(y),

λG∪TT UT (w) + λG∪TG UG(w) ≥ λG∪TT UT (z) + λG∪TG UG(z), and

λH∪TT UT (y′) + λH∪TH UH(y′) ≥ λH∪TT UT (x′) + λH∪TH UH(x′) .

Substituting (b’) in the first two inequalities in (d’) yield UT (x) − UT (y) ≥ UT (z) −
UT (w), and together with (a’), UT (x′) − UT (y′) ≥ UT (z′) − UT (w′). Employing (c’), the

third inequality in (d’) becomes, λH∪TH (UH(w′)− UH(z′)) ≥ λH∪TT (UT (x′)− UT (y′)), hence

λH∪TH (UH(w′)− UH(z′)) ≥ λH∪TT (UT (z′)− UT (w′)), implying the required w′ %T∪H z′.

Tradeoff Pareto (A6) easily follows by noting that whenever tradeoffs are comparable,

a tradeoff preference relationship holds if and only if differences of the corresponding utility

are equal. Since all tradeoffs are assumed in the axiom to be comparable, the axiom simply

states that inequality of utility differences according to UT and UG implies inequality of those

differences according to the utility UG∪T , a trivial implication of the additive representation

supposed in (ii) of the theorem.

4.2 Sufficiency: the representation holds

For clarity, we include in this subsection only the outline of the proof, composed of three logical

steps, each formulated as a proposition. The detailed proofs of the propositions can be found

in the appendix.

The first proposition states that for any fixed nonempty, disjoint subsets G,T ⊂ N , there

exists an additive representation of %G∪T .

Proposition 1. Let G,T ⊂ N be two disjoint subsets of individuals. Then there are utility

functions UG∪TG , UG∪TT : X −→ R such that UG∪TG represents %G, UG∪TT represents %T , and

UG∪TG + UG∪TT represents %G∪T .

Furthermore, the utilities that deliver this additive representation are jointly cardinal,

namely if there are ÛG, ÛT that obtain the same form of additive representation, then

ÛG = τUG∪TG + ρG, ÛT = τUG∪TT + ρT , for τ > 0.

The proof can be found in the appendix, in Subsection 5.1.

According to Proposition 1, for any two non-empty, disjoint sets T,G ⊂ N , there exists a

representation UT∪G = UT∪GT +UT∪GG of %T∪G with continuous, jointly cardinal utilities UT∪GT

and UT∪GG that represent %T and %G, respectively. Likewise, there exists a representation

UN = UNT +UNN\T of %N with continuous, jointly cardinal utilities UNT and UNN\T that represent

%T and %N\T , respectively. The next proposition states that UT∪GT = βUNT + τ for some

τ, β ∈ R, β > 0. The proof of the proposition appears in the appendix in Subsection 5.2.
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Proposition 2. Let G,T ⊂ N be two disjoint subsets of individuals. Let UG∪TG + UG∪TT be

the additive representation of %G∪T and UNN\T + UNT the additive representation of %N ,

according to Proposition 1. Then there are β, τ ∈ R, β > 0, such that UT∪GT = βUNT + τ .

According to Proposition 2, all the utilities UG∪TT , derived within additive representations

UG∪TG + UG∪TT of %G∪T for nonempty subsets of individuals G ⊂ N disjoint from T , are

cardinally the same.

Let T ( N be a subset containing at least two individuals, and let UNT denote the cardinal

utility representing %T that results from applying Proposition 1 to %T ,%N\T and %N . For

a nonempty H ( T Let UT denote the cardinal utility representing %T within the additive

representation of %T as obtained from partitioning T into H,T \H. Both utilities represent

%T . According to the next proposition, UNT and UT are cardinally the same.

Proposition 3. Let T,H ( N be nonempty sets such that H ( T . Let UNN\T + UNT be the

additive representation of %N and UTH +UTT\H the additive representation of %T , as obtained

according to Proposition 1. Then there are γ, ξ ∈ R, γ > 0, such that UNT = γUT + ξ.

The proof of the proposition can be found in Subsection 5.3 in the appendix.

We thus established that for every nonempty group of individuals T ( N , the utilities UT

that are obtained as the additive sum UT = UTH +UTT\H for nonempty groups H ( T (if those

exist), and the utilities UT∪GT that are obtained within the additive sum UT∪G = UT∪GT +UT∪GG

for nonempty groups G ⊆ N \ T , are all cardinally related, namely they are positive affine

transformations of one another.

For every T ⊆ N choose a calibration and denote the utility thus calibrated by UT . Hence

there are utilities {UT }∅6=T⊆N such that for every nonempty, disjoint G,T ⊂ N ,

UG∪T = λG∪TG UG + λG∪TT UT , for λG∪TG , λG∪TT > 0 .

The fact that the coefficients are strictly positive follows from the strong form of Pareto (A2)

that we use.

The utilities {UT }∅6=T⊆N are jointly cardinal, owing to the joint cardinality for every

additive representation that is obtained at the beginning of the proof. Finally, for nonempty,

disjoint G,T ⊂ N , UG and UT are jointly improvable as a result of Agreed Improvement (A3),

and are diversified because of Diversity of Tastes (A4).
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5 Appendix

For outcomes x, y, z, w ∈ X and a nonempty subset T ⊂ N we say that the tradeoffs x 	 y
and z 	 w are comparable according to %T or that they are %T -comparable whenever either

x 	 y �T z 	 w or z 	 w �T x 	 y. Note that x 	 y and z 	 w for x ∼T y ∼T z ∼T w

are always comparable, satisfying x	 y 'T z 	w, by considering the %T -indifferent x, x, x, x,

which trivially satisfy the condition in Definition 1. For a set E we denote the interior of E

by int(E), and the closure of E by cl(E).

5.1 Proof of Proposition 1

By the basic assumptions there exist continuous utility functions representing %G and %T .

Denote them uG and uT , respectively. The proof of the proposition starts by mapping each

point x ∈ X to its utilities image, (uG(x), uT (x)), and working with the standard topology on

R
2. An additive representation UG∪T = UG + UT of %G∪T is derived in this utilities space,

by considering the binary relations induced there by the relations %G,%T , and %G∪T . For

the relations %G and %T , the induced relations in utilities space simply translate to the real

order on each of the two axes. The induced joint relation, also denoted %G∪T , is defined by

(uG(x), uT (x)) %G∪T (uG(y), uT (y)) ⇐⇒ x %G∪T y. It is well defined owing to Extended

Pareto (A2), which asserts that for two outcomes x and y, uG(x) = uG(y) and uT (x) = uT (y)

implies x ∼G∪T y.

To obtain an additive representation in utilities space, Corollary 2.3 (and the related

Theorem 3.3) of Chateauneuf and Wakker [4] is applied on the utilities image of X under

(uG(·), uT (·)), namely on

E = { (uG(x), uT (x)) | x ∈ X } .
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Corollary 2.3 relies on an assumption, marked 2.1 in that paper, stating the connectedness

of various sets, and requiring the relation%G∪T to satisfy monotonicity and continuity. Monotonicity

of %G∪T is with respect to the coordinate relations, in our case monotonicity with respect to

%G and %T , which follows from Extended Pareto (A2). Lemmas 1-7 below establish all the

other components of Assumption 2.1, as well as the additional assumption in Theorem 3.3, in

Chateauneuf and Wakker [4], are satisfied.

The first lemma proves that the image of any connected set F ⊂ E under the inverse

correspondence (uG, uT )−1 is connected as well. This follows from the correspondence (uG, uT )−1,

from E to X, being upper semicontinuous, together with a result stating that the image of a

connected set under an upper semicontinuous correspondence is also connected.

Lemma 1. Let F ⊂ E be a connected set in the relative standard topology on E. Then

(uG, uT )−1(a, t) is connected with respect to the topology over X induced by the orders %G and

%T .

Proof. Upper semicontinuity of (uG, uT )−1 requires that for every (a, t) ∈ E and every open

subset O ⊂ X containing (uG, uT )−1(a, t), there exist a neighborhood of (a, t), N(a, t), such

that for every (b, s) ∈ N(a, t), (uG, uT )−1(b, s) ⊆ O. It suffices to show the desired inclusion

for each of the sets of the forms: {z ∈ X | z �G x}, {z ∈ X | z �T x}, {z ∈ X | x �G z}, and

{z ∈ X | x �T z}.
Fix w ∈ X, consider the open set O = {z ∈ X | z �G w}, and assume (uG, uT )−1(a, t) ⊂ O.

It implies that a > uG(w). Set N(a, t) = {(b, s) | b > uG(w)}, so N(a, t) is a neighborhood

of (a, t). For every (b, s) ∈ N(a, t), each y ∈ (uG, uT )−1(b, s) satisfies y �G w. Therefore,

(uG, uT )−1(b, s) ⊂ O. The same arguments prove the inclusion for O = {z ∈ X | w �G z} and

for the same open sets with �T instead of �G. It follows that the same holds for any open

set in the order topology of X, generated by those sets. Consequently (uG, uT )−1 is upper

semicontinuous, and by a result from Hiriart-Urruty [9], the image of any connected set F ⊂ E
under it is connected as well. �

Connectedness of inverse images under (uG, uT )−1 lets us prove the following useful lemma.

Lemma 2. For every x ∈ X which is neither unanimously maximal nor unanimously minimal,

the sets {(uG(y), uT (y)) | y ∈ X,uG(y) = uG(x)} and {(uG(y), uT (y)) | y ∈ X,uT (y) = uT (x)}
are non-degenerate intervals.

Proof. Our structural assumption states that for every x ∈ X, the sets {y ∈ X | y ∼G x} and

{y ∈ X | y ∼T x} are connected. The utilities uG and uT are continuous, therefore the above

sets of utility values, contained in R, are connected. Namely, these sets are intervals. In order

to prove that these intervals are non-degenerate, it is shown that Diversity (A4) implies that

for every x ∈ X that is neither unanimously maximal not unanimously minimal, there exist

z′, z′′ such that z′ ∼G x and z′′ ∼T x, while z′′ �G x and z′ �T x.

Let x ∈ X. Diversity states that there exists y ∈ X such that y �G x and x �T y, or

y �T x and x �G y. Suppose, w.l.o.g., that the former holds. The set {z ∈ X | z �G x} is
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the image under (uG, uT )−1 of the set F = {(a, t) ∈ E | a > uG(x)}. According to Lemma 1,

if F is connected according to the relative standard topology of E, then {z ∈ X | z �G x} is

connected as well. It is now shown by negation that F is indeed connected.

Suppose on the contrary that there are two sets, A and B, closed in the relative standard

topology of F , which union is F , and intersection is empty. Recall that E is connected, hence

cl(A ∪ (E \ F )) and cl(B) must have a nonempty intersection, as these are two closed sets in

the relative topology of E, which union is the entire E. The same is true for cl(B ∪ (E \ F ))

and cl(A). Points in both these intersections must have their first coordinate equal uG(x).

It follows that there is a sequence of points in B, ((bBn , s
B
n ))n, which converges to a point

(uG(x), sB), and a sequence of points in A, ((bAn , s
B
n ))n, converging to a point (uG(x), sA). We

generate a contradiction by proving that A and B must contain points with the same first

coordinate, which by connectedness of the images of %G-indifference classes imply that the

entire interval between those points must be contained in E, contradicting the fact that A and

B are closed in the relative topology of F , and disjoint.

Suppose that A contains two points, (bAm, s
A
m) and (bAn , s

A
n ), for uG(x) < bAn < bAm. If A

does not include points (bAk , s
A
k ) for bAn < bAk < bAm, then E can be partitioned into the sets

A∩ {(b, s) | b ≥ 2bAm+bAn
3 } and (E \F )∪B ∪ (A∩ {(b, s) | b ≤ bAm+2bAn

3 }), which are two disjoint,

relatively closed sets which union is E. This is a contradiction to the connectedness of E.

Hence whenever A contains points (bAm, s
A
m) and (bAn , s

A
n ) then it also contains points (bAk , s

A
k ),

for every bAn < bAk < bAm. The same holds for B.

Let ε > 0, then there exists a point (bAm, s
A
m) ∈ A such that 0 < bAm − uG(x) < ε, and

in the same manner there are points (bAn , s
A
n ) ∈ A and (bBr , s

B
r ), (bB` , s

B
` ) ∈ B that satisfy

0 < bBr − uG(x) < bAn − uG(x) < bB` − uG(x) < bAm − uG(x). According to the previous

paragraph, it follows that both A and B contain points (b, s) for every bAn ≤ b ≤ bB` . Set

one such value b, let (b, s′) ∈ A and (b, s′′) ∈ B, and suppose w.l.o.g. that s′ ≤ s′′. As

was proved above, {(uG(y), uT (y)) | y ∈ X,uG(y) = b} is an interval (b is obtained as a first

coordinate in E, therefore it is uG(z) for some z). As a result, F must include the entire

interval {(b, s) | s′ ≤ s ≤ s′′} (where b > uG(x)), contradicting the choice of A and B as

disjoint and closed in the relative topology of F . It is concluded that F is connected, hence

{z ∈ X | z �G x}, its inverse image under (uG, uT )−1, is connected as well, following Lemma

1.

Consider the division of the connected {z ∈ X | z �G x} into sets, {z ∈ X | x %T z}∩{z ∈
X | z �G x} and {z ∈ X | z %T x} ∩ {z ∈ X | z �G x}. These two sets are closed in the

relative topology of {z ∈ X | z �G x} and their union is the entire {z ∈ X | z �G x}. The

first set is nonempty, as we assumed that the former option of Diversity is satisfied, that is,

that there exists y ∈ X satisfying y �G x and x �T y. The second set is nonempty following

Agreed Improvement (A3). It follows that the intersection of these two sets is nonempty,

namely, that there exists z′ ∈ X such that z′ �G x and z′ ∼T x. In the same manner, the

set {z ∈ X | x �T z} can be shown to be connected, and by analogously considering the sets

{z ∈ X | x %G z}∩{z ∈ X | x �T z} and {z ∈ X | z %G x}∩{z ∈ X | x �T z} it is established
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that there exists z′′ ∈ X such that z′′ ∼G x and x �T z′′.
If the second option of diversity holds, meaning that there is y ∈ X such that x �G y

and y �T x, then the proof may be repeated with connected sets {z ∈ X | x �G z} and

{z ∈ X | z �T x}. In any case, it results that for every x ∈ X there exist z′, z′′ ∈ X such that

z′ �G x, z′ ∼T x, z′′ ∼G x, z′′ �T x.

Now return to the set {(uG(y), uT (y)) | y ∈ X,uG(y) = uG(x)} for x ∈ X. It was already

proved that this set is an interval. As there is z′′ ∈ X such that z′′ ∼G x but z′′ �T x, this

interval is non-degenerate. The same argument leads to that conclusion for the other interval.

�

Lemma 3. E ⊆ cl(int(E)).

Proof. We show that for each point (a, t) in E, which is neither the utilities image of

a unanimously maximal outcome, nor the utilities image of a unanimously minimal outcome

every neighborhood of (a, t) intersects int(E). According to Lemma 2, {s | (a, s) ∈ E} is

a non-degenerate interval which contains t, and {b | (b, t) ∈ E} is a non-degenerate interval

containing a. Suppose that on these intervals, there are s > t such that (a, s) ∈ E, and b > a

such that (b, t) ∈ E, hence (a, r) ∈ E for every t ≤ r ≤ s, and (c, t) ∈ E for every a ≤ c ≤ b.
By Lemma 2, if there is a point (c, r) in E such that a < c ≤ b, then the interval {(c, r′) | t ≤

r′ ≤ r} is in E, and by applying Lemma 2 to points on this interval with r′ ≤ min (r, s), and

to points on the interval {(a, r′) | t ≤ r′ ≤ min (r, s)}, all the points in the rectangle which

vertices are (a, t), (a,min (r, s)), (c,min (r, s)) and (c, t) are included in E. Every neighborhood

of (a, t) intersects this rectangle, hence every neighborhood of (a, t) contains interior points of

E. Symmetrically, this neighborhood exists if there is a point (c, r) in E such that t < r ≤ s.
Otherwise, there does not exist a point (c, r) with a < c ≤ b nor with t < r ≤ s. However,

by A3, since (a, s) and (b, t) are neither unanimously minimal nor unanimously maximal, there

is (d, `) such that d > b and ` > s, generating a contradiction to connectivity of E. Therefore

there must exist a point (c, r) with either a < c ≤ b or t < r ≤ s, and the intersecting

neighborhoods as above follow. Similar intersection of neighborhoods with points in int(E)

follows if on the intervals going through (a, t) there are points (a, s), (b, t) ∈ E with s < t and

b < a (by using (d, `) such that d < b and ` < s).

Otherwise suppose that on the intervals going through (a, t) there are points (a, s), (b, t) ∈ E
with s > t and b < a. Lemma 2 implies that (a, r) ∈ E for every t ≤ r ≤ s, and (c, t) ∈ E for

every b ≤ c ≤ a. If there exists a point (c, r) ∈ E with c < a and r > t, then by connectivity

there must be a point (c, r) with either b ≤ c < a or t < r ≤ s. In that case a rectangle of

interior points as above follows, intersecting each neighborhood of (a, t).

Otherwise there is no point (c, r) ∈ E with c < a and r > t. Suppose that there is a point

(c, r) ∈ E with c > a and r < t. Then, again by connectivity of E, it cannot be that both

rays {(d, t) | d > a} and {(a, `) | ` < t} have an empty intersection with E. Hence, applying

Lemma 2 once more, there is either an interval {(d, t) | a ≤ d ≤ c}, for c > a, or an interval

26



{(a, `) | r ≤ ` ≤ t}, for r < t, which is contained in E, and the desired neighborhoods follow

as in the cases above.

Lastly, the case where there is neither a point (c, r) with c < a and r > t, nor a point (c, r)

with c > a and r < t, is excluded owing to part (b) of Diversity (A4(b)).

It is concluded that in any case, every neighborhood of (a, t) intersects int(E). Denote by

E∗ the set E excluding the utilities image of any unanimously minimal and any unanimously

maximal outcomes, if such outcomes exist. Therefore E∗ ⊆ cl(int(E)). Following non-

degeneracy (A1(d)) and connectedness of E, E∗ is non-empty, and every neighborhood of

the utilities image of a unanimously maximal or unanimously minimal outcome contains the

utilities image of an outcomes which is neither unanimously maximal nor unanimously minimal.

Therefore every neighborhood of the utilities image of a unanimously maximal or unanimously

minimal outcome also intersects int(E), and E ⊆ cl(int(E)). �

Lemma 4. int(E) is connected.

Proof. First note that since X is connected, and the mapping (uG, uT ) is continuous, then

E is connected as well. Suppose on the contrary that there are two non-empty sets, A and B,

that are open in the relative (standard) topology of int(E) (hence open), and that partition

int(E). By Lemma 3, E ⊆ cl(int(E)) = cl(A) ∪ cl(B). Since E is connected and non-empty,

the intersection cl(A) ∩ cl(B) ∩ E is nonempty.

Lemma 2 states that for each x ∈ X, the images of x’s indifference classes according to

%G and according to %T are each an interval. Therefore if (a, t) ∈ A then neither (a, s) nor

(b, t) are in B (as the entire interval between each two points (b, t′) ∈ E and (b, s′) ∈ E

in the neighborhoods of (a, t) and (a, s) is also contained in E). Denote by (b, s) a point in

cl(A)∩cl(B)∩E. If we consider the four orthants around (b, s), then by the previous argument

A and B must be contained in opposite orthants relative to (b, s), hence their closures reside on

opposite orthants, including possibly the lines {(a, t) | a = b} and {(a, t) | t = s}. Note that as a

result (b, s) is neither a unanimously maximal nor a unanimously minimal outcome, since there

must be points in either A or B with one of their coordinates larger than the corresponding

coordinate of (b, s), and points in either A or B with one or their coordinates smaller than

the corresponding coordinate of (b, s). As cl(A) and cl(B) are contained in opposite orthants,

there is either no point (a, t) ∈ E with a > b and t > s, or there is no point (a, t) ∈ E with

a > b and t < s. The first possibility contradicts A3 (by setting x = y in that assumption,

with b = uG(x), s = uT (x)), and the second possibility contradicts A4(b). It is concluded that

sets A,B as supposed cannot exist. Namely, int(E) is connected. �

Lemma 5. Any utility indifference class of %G∪T within int(E), {(uG(y), uT (y)) | y ∼G∪T

x} ∩ int(E) for every x ∈ X, is connected.

Proof. Let x ∈ X. The structural assumption (A0(b)) guarantees that the indifference

class of %G∪T containing x, in outcome space, is connected. Hence its image under the
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continuous mapping (uG, uT ) is connected, in E. It should be established that it is also

connected in int(E). For that, note first that the image of x’s indifference class according

to %G∪T is a curve. This is since for every point (a, t) in this image, Extended Pareto (A2)

implies that any point of the form (b, s), with b ≥ a, s ≥ t or b ≤ a, s ≤ t, is not contained

in the image of the same indifference class. Moreover, it follows that this curve is strictly

decreasing.

It is next proved that any point in the relative interior of the image of the indifference

class of x is an interior point of E. Let (uG(y), uT (y)) be in the relative interior of this

image. Namely, there are z′, z′′ ∈ X such that z′, z′′ ∼G∪T x, with their utilities satisfying

uG(z′) < uG(y), uT (z′) > uT (y) and uG(z′′) > uG(y), uT (z′′) < uT (y). Following Lemma 2, the

points in E which first coordinate is uG(y) form a non-degenerate interval, and similarly the

points in E which second coordinate is uT (y). The proof continues by addressing all possible

locations of (uG(y), uT (y)) within these intervals.

Case 1.

There are y1, y2, y3, y4 ∈ X such that,

uG(y1) > uG(y) , uT (y1) = uT (y)

uG(y2) = uG(y) , uT (y2) > uT (y)

uG(y3) < uG(y) , uT (y3) = uT (y)

uG(y4) = uG(y) , uT (y4) < uT (y).

As the curve {(uG(y), uT (y)) | y ∼G∪T x} is connected, it contains a point (a, t) with

a > uG(y) that is still smaller than both uG(z′′) and uG(y1). Following the same arguments

as in the proof of Lemma 3, all points (b, s) with uG(y) ≤ b ≤ a and t ≤ s ≤ uT (y) are in E.

Similarly, there is a rectangle of points with first coordinate smaller than uG(y), and second

coordinate larger than uT (y), which is contained in E. Furthermore, in a similar manner to the

proof of Lemma 3, connectivity implies that there is a point (a, t) ∈ E with either uG(y) < a ≤
uG(y1) or uT (y) < t ≤ uT (y2), implying that there is a neighborhood of (uG(y), uT (y)) which

intersection with {(b, s) | b > uG(y), s > uT (y)} is contained in E. The same arguments imply

such a neighborhood which intersection with {(b, s) | b < uG(y), s < uT (y)} is contained in E.

Altogether, there is a neighborhood of (uG(y), uT (y)) that is contained in E, and (uG(y), uT (y))

is an interior point of E.

Case 2.
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There are y1, y2, y3 ∈ X such that,

uG(y1) > uG(y) , uT (y1) = uT (y),

uG(y2) = uG(y) , uT (y2) > uT (y),

uG(y3) < uG(y) , uT (y3) = uT (y), and

uT (y) = min {t |(uG(y), t) ∈ E} .

The arguments employed in Case 1 may be repeated to obtain that there is a neighborhood

of (uG(y), uT (y)), which intersection with {(b, s) | s > uT (y)} is contained in E. Denote the

supremum of the first coordinate in this neighborhood by a. Then Lemma 2 further implies

that all points (b, s) with uG(y) ≤ b ≤ min (a, uG(z′′)), s < uT (y), with (b, s) that is above the

curve {(uG(z), uT (z)) | z ∼G∪T x}, belong to E as well.

Case 2 states that uT (y) = min {t |(uG(y), t) ∈ E}. In other words, there are no points

(b, s) ∈ E with b = uG(y) and s < uT (y). Hence there are no points (b, s) ∈ E with b < uG(y)

and uT (z′′) ≤ s < uT (y) (again following Lemma 2, by negation – otherwise there would be an

interval in E, with second coordinate s, and first coordinate between b and the curve, going

through (uG(y), s), s < uT (y)). On the other hand, it follows from Agreed Improvement (A3)

that there exists a point (uG(ẑ), uT (ẑ)) in E such that uG(ẑ) < uG(y), and uT (ẑ) < uT (y).

This assumption, and the lack of points in E within {(b, s) | b < uG(y), uT (z′′) ≤ s < uT (y)}
and {(uG(y), s) | s < uT (y)}, generate a contradiction to the connectivity of E. Therefore

there must be a point y4 with uG(y4) = uG(y), and uT (y4) < uT (y), as in the first case, and

the same conclusion follows. Symmetric cases, where either uT (y) = max {t |(uG(y), t) ∈ E},
uG(y) = min {a |(a, uT (y)) ∈ E}, or uG(y) = max {a |(a, uT (y)) ∈ E}, are proved in the same

manner.

Case 3.

There are y1, y2 ∈ X such that,

uG(y1) > uG(y) , uT (y1) = uT (y),

uG(y2) = uG(y) , uT (y2) > uT (y),

uG(y) = min {a |(a, uT (y)) ∈ E}, and

uT (y) = min {t |(uG(y), t) ∈ E} .

This case is immediately eliminated, seeing that it inflicts a contradiction to connectivity,

through the assumption that there is a point (uG(ẑ), uT (ẑ)) in E such that uG(ẑ) < uG(y), and

uT (ẑ) < uT (y) (a result of A3). This is since y cannot be a unanimously minimal outcome,

as it was assumed that there are outcomes z′, z′′ with uG(z′) < uG(y). Similarly, the case

uG(y) = max {a |(a, uT (y)) ∈ E} and uT (y) = max {t |(uG(y), t) ∈ E} is ruled out.
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Case 4.

There are y2, y3 ∈ X such that,

uG(y2) = uG(y) , uT (y2) > uT (y),

uG(y3) < uG(y) , uT (y3) = uT (y),

uG(y) = max {a |(a, uT (y)) ∈ E}, and

uT (y) = min {t |(uG(y), t) ∈ E} .

As in the previous cases, there is a neighborhood of (uG(y), uT (y)) which intersection with

{(b, s) | b < uG(y), s > uT (y)} is contained in E. Within this case it is supposed that points

(uG(y), s), s < uT (y), and (b, uT (y)), b > uG(y), do not belong to E. As uG(z′′) > uG(y)

and uT (z′′) < uT (y), and the curve {(uG(z), uT (z)) | z ∼G∪T x} is connected, then it must

also hold (employing again Lemma 2) that E contains no points (b, s) with b < uG(y) and

uT (z′′) ≤ s < uT (y). Similarly to Case 2, excluding all those points from E, while requiring

part (b) of the structural assumption (A0), cannot be reconciled with connectivity of E. The

case uG(y) = min {a |(a, uT (y)) ∈ E} and uT (y) = max {t |(uG(y), t) ∈ E} is analogous.

It is concluded that Case 1 is the only one that could hold for a point (uG(y), uT (y))

in the relative interior of {(uG(z), uT (z)) | z ∈ X, z ∼G∪T x}. Therefore, as was proved

in Case 1, any such relative interior point (uG(y), uT (y)) is an interior point of E, hence

{(uG(y), uT (y)) | y ∼G∪T x} ∩ int(E), for every x ∈ X, contains the entire relative interior of

the connected curve {(uG(y), uT (y)) | y ∼G∪T x}, and is thus connected.

�

Lemma 6. For every x ∈ X, the sets {(uG(y), uT (y)) | uG(y) = uG(x)} ∩ int(E), and

{(uG(y), uT (y)) | uT (y) = uT (x)} ∩ int(E), are connected.

Proof. First note that without intersecting with int(E), the sets {(uG(y), uT (y)) | uG(y) =

uG(x)} and {(uG(y), uT (y)) | uT (y) = uT (x)} are connected, being the image under a continuous

function of a connected set (in outcomes space; Following assumption A0(b)). Suppose that

there are outcomes y, y′, y′′ ∈ X with uG(y) = uG(y′) = uG(y′′) = uG(x) and uT (y′) > uT (y) >

uT (y′′), where (uG(y′), uT (y′)) and (uG(y′′), uT (y′′)) are interior points of E. It is proved that

(uG(y), uT (y)) must also be an interior point of E.

If (uG(y′), uT (y′)) and (uG(y′′), uT (y′′)) are interior points of E, then there is (a minimal)

ε > 0 such that the sets,

{(uG(y′), uT (y′)) + τ(cos θ, sin θ) | 0 < τ < ε, θ ∈ [0, 2π]}
{(uG(y′′), uT (y′′)) + τ(cos θ, sin θ) | 0 < τ < ε, θ ∈ [0, 2π]}

are contained in E. However, recall that according to Lemma 2, if there are points (a, t)

and (a, s) both belonging to E, then any point (a, r) with r between t and s also belongs to

30



E. Hence for each 0 < τ < ε and each θ ∈ [0, 2π], (uG(y′) + τ cos θ, uT (y′) + τ sin θ) and

(uG(y′′) + τ cos θ, uT (y′′) + τ sin θ) both belonging to E, and the fact that uG(y′) = uG(y′′) =

uG(y), implies that (uG(y) + τ cos θ, uT (y) + τ sin θ) belongs to E as well. Therefore there is

a neighborhood of (uG(y), uT (y)) included in E, namely, (uG(y), uT (y)) is an interior point of

E.

The above implies that there cannot be a boundary point between two interior points in

the set {(uG(y), uT (y)) | uG(y) = uG(x)}. That is to say, if there is a boundary point then all

points to (at least) one side of it must also be boundary points. Hence, the intersection of this

image with int(E) is connected. Analogously, the same holds for {(uG(y), uT (y)) | uT (y) =

uT (x)} ∩ int(E). �

Lemma 7. %G∪T on E is continuous.

Proof. In order to prove the desired continuity, it should be proved that for every (a, t) ∈ E,

the sets {(b, s) ∈ E | (b, s) �G∪T (a, t)} and {(b, s) ∈ E | (a, t) �G∪T (b, s)} are open in the

relative (standard) topology of E. Let (a, t) ∈ E. It was proved in Lemma 5 that {(b, s) ∈
E | (b, s) ∼G∪T (a, t)} is a strictly downward sloping curve, and that any point in its relative

interior is an interior point of E. It is now shown that the opposite is also true. That is to say,

if a point (c, r) ∈ {(b, s) ∈ E | (b, s) ∼G∪T (a, t)} is a relative boundary point of this curve,

then it is also a boundary point of E. Specifically, we next prove that for the upper most

point on this curve there is no point in E with a smaller first coordinate and larger second

coordinate, and for the lowest point on this curve there is no point in E with a larger first

coordinate and a smaller second coordinate.

Suppose a point (c, r) such that (c, r) ∼G∪T (a, t), and for which there is no other point

(c′, r′) ∼G∪T (a, t) with c′ > c and r′ < r. We prove by negation that in that case, there can

be no points (c′, r′) ∈ E with c′ > c and r′ < r. Suppose on the contrary that there was such

a point (c′, r′). Then it cannot hold that both rays, {(b, r) | b > c} and {(c, s) | s < r} have an

empty intersection with E, because that would generate a contradiction to the connectivity of

E. Therefore (also employing Lemma 2) suppose that there is an interval {(c, s) | ` ≤ s ≤ r},
for ` < r, which is contained in E. Still, for {(b, r) | b > c} not to intersect E it should

also hold that the ray {(c′, s) | r < s} has an empty intersection with E. However, as (c′, r′)

is not unanimously maximal, that would again generate a contradiction to the connectivity

of E, based on Agreed Improvement (A3). Supposing first a nonempty intersection with

{(b, r) | b > c} yields an analogous contradiction.

The previous paragraph implies that there are intervals, {(c, s) | ` ≤ s ≤ r} for ` < r, and

{(b, r) | c ≤ b ≤ d} for d > c, contained in E. Same as in the proof of Lemma 3, there exists

a rectangle with vertices (c, r), (d′, r), (b, `′), (c, `′), for d′ > c and `′ < r, which is contained in

E. Denote R = {(b, s) | c ≤ b ≤ d′, `′ ≤ s ≤ r}. To generate a contradiction it is shown that

R \ {(c, r)} must contain a point (c′, r′) ∼G∪T (c, r), contradicting the choice of (c, r).

To show that a contradiction ensues, it is next proved that (uG, uT )−1(R \ {(c, r)}) is

connected. For that, we show that the correspondence (uG, uT )−1, from E to X, is upper
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semicontinuous, and employ a result stating that the image of a connected set under an upper

semicontinuous correspondence is also connected. Upper semicontinuity of (uG, uT )−1 requires

that for every (a, t) ∈ E and every open subset O ⊂ X containing (uG, uT )−1(a, t), there exist

a neighborhood of (a, t), N(a, t), such that for every (b, s) ∈ N(a, t), (uG, uT )−1(b, s) ⊆ O.

It suffices to show the desired inclusion for sets {z ∈ X | z �G x}, {z ∈ X | z �T x}, {z ∈
X | x �G z}, and {z ∈ X | x �T z}.

Consider an open set O = {z ∈ X | z �G w} for w ∈ X, such that (uG, uT )−1(a, t) ⊂
O, hence a > uG(w). Set N(a, t) = {(b, s) | b > uG(w)}, so N(a, t) is a neighborhood of

(a, t), and for every (b, s) ∈ N(a, t), every y ∈ (uG, uT )−1(b, s) satisfies y �G w, therefore

(uG, uT )−1(b, s) ⊂ O. The same arguments prove the inclusion for O = {z ∈ X | w �G z} and

for the same open sets with �T instead of �G. It follows that the same holds for any open

set in the order topology of X, generated by those sets. Consequently (uG, uT )−1 is upper

semicontinuous, and by a result from Hiriart-Urruty [9], the image of the connected R\{(c, r)}
under it is connected as well.

Let x, y ∈ X be such that uG(x) = c, uT (x) = r, uG(y) = d′, uT (y) = `′. Then,

(uG, uT )−1(R \ {(c, r)}) = {z ∈ X | y �G z �G x, x �T z �T y} \ {z ∈ X | z ∼G x, z ∼T x} .

Denote,

A = {z ∈ X | z %G∪T x} ∩ (uG, uT )−1(R \ {(c, r)})
B = {z ∈ X | x %G∪T z} ∩ (uG, uT )−1(R \ {(c, r)}) .

A and B are closed in the relative topology of R \ {(c, r)}. They are nonempty since for

y′ ∈ (uG, uT )−1(d′, r), y′ �G∪T x, and for y′′ ∈ (uG, uT )−1(c, `′), x �G∪T y′′, and their union

is R \ {(c, r)}. Hence, by connectedness of R \ {(c, r)}, their intersection must be nonempty.

Namely, there should exist z ∈ X such that z ∈ (uG, uT )−1(R \ {(c, r)}) and z ∼G∪T x,

generating a contradiction to the assumption that no point (c′, r′) ∼G∪T (c, r) satisfies c′ > c

and r′ < r. It is concluded that there can be no point (b, s) ∈ E such that b > c and s < r.

Analogue arguments prove that whenever (c, r) ∼G∪T (a, t) is such that no (c′, r′) ∼G∪T (a, t)

satisfies c′ < c, r′ > r, then there is no point (b, s) ∈ E such that b < c, s > r.

The previous arguments imply that the indifference set {(b, s) ∈ E | (b, s) ∼G∪T (a, t)} is

a downward sloping curve, dividing E into two parts, one above and one below that curve.

Therefore, {(b, s) ∈ E | (b, s) �G∪T (a, t)} consists of all points in E which are strictly above

that curve. More formally, to establish that this is indeed an open set, denote by (c′, r′) the

point on this curve with maximal second coordinate (the upper-most point on the curve),

and by (c′′, r′′) the point on this curve with maximal first coordinate (the lowest point on the
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curve). Consider the (continuous) curve in R2,

L = {(b, s) ∈ (R)2 | b < c′, s > r′, b+ s = c′ + r′} ∪
{(b, s) ∈ E | (b, s) ∼G∪T (a, t)} ∪
{(b, s) ∈ (R)2 | b > c′′, s < r′′, b+ s = c′′ + r′′} .

Then,

{(b, s) ∈ E | (b, s) �G∪T (a, t)} =

 ⋃
(b,s)∈L

{(d, `) ∈ R2 | d > b, ` > s}

⋂E ,

which is open in the relative standard topology of E. Similarly, the set {(b, s) ∈ E | (a, t) �G∪T

(b, s)} consists of all point in E which are strictly below that curve, hence it is an open set.

As a result, %G∪T is continuous on E. �

The above lemmas establish that all the components of Assumption 2.1, as well as the

additional assumption in Theorem 3.3, in Chateauneuf and Wakker [4], are satisfied. To

derive the desired representation through Theorem 3.3 and Corollary 2.3 of [4], it is required

that the relation in question satisfy an additivity condition. According to Theorem III.6.6 in

Wakker [18] it suffices to show that %G∪T over E satisfies the Reidemeister condition. This

is a straightforward implication of Consistency of Social Tradeoffs (A5), shown in the lemma

below.

Lemma 8. Let (a, t), (b, s), (c, t), (d, s), (a, t′), (b, s′), (c, t′), (d, s′) ∈ E. If (a, t) ∼G∪T (b, s),

(d, s) ∼G∪T (c, t), and (b, s′) ∼G∪T (a, t′), then (d, s′) ∼G∪T (c, t′).

Proof. Being in E, there are outcomes x, y, z, w, x′, y′, z′, w′ ∈ X such that,

a = uG(x) , t = uT (x)

b = uG(y) , s = uT (y)

c = uG(z) , t = uT (z)

d = uG(w) , s = uT (w)

a = uG(x′) , t′ = uT (x′)

b = uG(y′) , s′ = uT (y′)

c = uG(z′) , t′ = uT (z′)

d = uG(w′) , s′ = uT (w′)

Equivalence of utility values implies,

x ∼G x′, y ∼G y′, z ∼G z′, w ∼G w′, and

x ∼T z, y ∼T w, x′ ∼T z′, and y′ ∼T w′ ,
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and by the induced relation %G∪T on utility pairs, x ∼G∪T y, w ∼G∪T z, and y′ ∼∗ x′.
Therefore Consistency of Social Tradeoffs (A5) renders w′ ∼G∪T z′, which translates to the

required (d, s′) ∼G∪T (c, t′). �

Corollary 2.3 of [4] can now be applied. We conclude that there are VG, VT : R −→ R, which

are continuous and strictly increasing, representing the real order over the x-axis and y-axis,

respectively. They form an additive representation V (a, t) = VG(a)+VT (t) of %G∪T on int(E).

Furthermore, VG and VT are jointly cardinal. According to Lemma 3, int(E) ⊆ E ⊆ cl(int(E)),

hence Theorem 3.3 of [4] may be applied to extend the additive representation to the entire E.

VG and VT are continuous, increasing functions overR, hence UG = VG·uG and UT = VT ·uT ,

their compositions over the continuous utility functions uG and uT , are themselves continuous

utility functions, representing %G and %T , respectively. For every x, y ∈ X,

x %G∪T y ⇔ (uG(x), uT (x)) %G∪T (uG(y), uT (y)) ⇔
VG(uG(x)) + VT (uT (x)) ≥ VG(uG(y)) + VT (uT (y)) .

Namely, for every x, y ∈ X, x %G∪T y, if and only if, UG(x) + UT (x) ≥ UG(y) + UT (y),

where UG and UT are continuous utility functions, representing the relations %G and %T ,

respectively, on X. These functions are jointly cardinal, that is, if (ÛG, ÛT ) is another additive

representation as above, the two must be jointly cardinal, namely ÛG = τUG + ρG, ÛT =

τUT + ρT , for τ > 0. This establishes Proposition 1.

5.2 Proof of Proposition 2

Lemma 9. Let T,G ⊂ N be two nonempty, disjoint sets, and denote,

ET,G = {(UT∪GT (t), UT∪GG (t)) | t ∈ X} .

Then for any θ ∈ X which is neither unanimously maximal for %T ,%G nor unanimously

minimal, the sets,

{(UT∪GT (y), UT∪GG (y)) | UT∪GT (y) = UT∪GT (θ)} ∩ int(ET,G)

{(UT∪GT (y), UT∪GG (y)) | UT∪GG (y) = UT∪GG (θ)} ∩ int(ET,G)

{(UT∪GT (y), UT∪GG (y)) | UT∪GT (y) + UT∪GG (y) = UT∪GT (θ) + UT∪GG (θ)} ∩ int(ET,G)

are nonempty.

Proof. Let θ ∈ X be an outcome that is neither unanimously maximal nor unanimously

minimal for %T ,%G. According to Lemma 2, the utilities indifference curve

{(UT∪GT (y), UT∪GG (y)) | UT∪GT (y) = UT∪GT (θ)} is a non-degenerate interval, and according to

Lemma 6 its intersection with int(ET,G) is connected, namely, an interval itself. Suppose on
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the contrary that it is an empty interval. Namely, suppose,

{(UT∪GT (y), UT∪GG (y)) | UT∪GT (y) = UT∪GT (θ)} ∩ int(ET,G) = ∅ .

Lemmas 3 and 4 assert that int(ET,G) is connected, and that ET,G ⊆ cl(int(ET,G)),

therefore, as indifference curves are intervals, one of two options must hold: either (a) for

every (UT∪GT (y), UT∪GG (y)) on this utilities indifference curve there is no (UT∪GT (z), UT∪GG (z))

such that UT∪GG (z) = UT∪GG (y) and UT∪GT (z) < UT∪GT (y) = UT∪GT (θ), or (b) for every

(UT∪GT (y), UT∪GG (y)) on this utilities indifference curve there is no (UT∪GT (z), UT∪GG (z)) such

that UT∪GG (z) = UT∪GG (y) and UT∪GT (z) > UT∪GT (θ). Assume that (a) holds.

Choose two points on the relative interior of this curve (which exist as the curve is a non-

degenerate interval), (UT∪GT (y′), UT∪GG (y′)) and (UT∪GT (y′′), UT∪GG (y′′)), such that y′, y′′ ∈ X

and UT∪GT (y′) = UT∪GT (y′′) = UT∪GT (θ). Being in the relative interior, y′ and y′′ are neither

unanimously minimal nor unanimously maximal, therefore according to Agreed Improvement

(A3) there is an outcome z∗ such that UT∪GT (z∗) < UT∪GT (θ) and UT∪GG (z∗) < min (UT∪GG (y′), UT∪GG (y′′)).

Since for every (UT∪GT (θ), UT∪GG (y)) ∈ EG,T there is no (UT∪GT (z), UT∪GG (y)) such that UT∪GT (z) <

UT∪GT (θ), then

UT∪GG (z∗) ≤ inf{y:UT∪G
T (y)=UT∪G

T (θ)} U
T∪G
G (y), for a finite infimum. Together with the fact that

there are points (UT∪GT (θ), UT∪GG (y)) ∈ EG,T for UT∪GG (y) > inf{y:UT∪G
T (y)=UT∪G

T (θ)} U
T∪G
G (y)

(again by Agreed Improvement), a contradiction is inflicted, either to the fact that int(EG,T )

is connected (Lemma 4), or to the fact that EG,T ⊆ cl(int(E)) (Lemma 3). If option (b) above

holds, the same arguments are applied, only with an outcome z∗ used, which dominates the

utility images of y′ and y′′ from above.

It is concluded that {(UT∪GT (y), UT∪GG (y)) | UT∪GT (y) = UT∪GT (θ)} contains interior points.

The proof for {(UT∪GT (y), UT∪GG (y)) | UT∪GG (y) = UT∪GG (θ)} is analogous.

To show that {(UT∪GT (y), UT∪GG (y)) | UT∪GT (y)+UT∪GG (y) = UT∪GT (θ)+UT∪GG (θ)}∩int(ET,G)

note that if θ is neither unanimously maximal nor unanimously minimal for %T and %G, then

the indifference curve of θ according to %T∪G, before intersecting it with int(ET,G), is a

non-degenerate interval. Therefore the relative interior of this utilities image is non-empty.

According to Lemma 5, each such point is an interior point of ET,G, and the result follows. �

According to Proposition 1, for any two non-empty, disjoint sets T,G ⊂ N , there exists a

representation UT∪G = UT∪GT +UT∪GG of %T∪G with continuous, jointly cardinal utilities UT∪GT

and UT∪GG that represent%T and%G, respectively. Likewise, there exists a representation UN =

UNT + UNN\T of %N with continuous, jointly cardinal utilities UNT and UNN\T that represent %T

and %N\T , respectively. It is next proved that UT∪GT = βUNT + τ for some τ, β ∈ R, β > 0. For

that, the next two lemmas show that, locally, whenever utility differences are equal according

to UNT , then they are equal according to UT∪GT .

Lemma 10. Let T,G be two nonempty, disjoint sets, and θ ∈ X an outcome such that M �T

θ �T m for some m,M ∈ X. Then there are y∗, y∗ ∈ X, satisfying y∗ �T θ �T y∗, such that,
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(1) For every (u1, u2) ∈ (UT∪GT (y∗), U
T∪G
T (y∗))×(UT∪GG (y∗), U

T∪G
G (y∗)) there exists an outcome

t ∈ X such that UT∪GT (t) = u1 and UT∪GG (t) = u2.

(2) For every x̃, ỹ, z̃, w̃ ∈ X for which y∗ �T x̃, ỹ, z̃, w̃ �T y∗ and x̃ %T ỹ,

UT∪GT (x̃)− UT∪GT (ỹ) ≥ UT∪GT (z̃)− UT∪GT (w̃) ⇐⇒ x̃	 ỹ �T z̃ 	 w̃

(3) For every x̃, ỹ, z̃, w̃ ∈ X for which y∗ �G x̃, ỹ, z̃, w̃ �G y∗ and x̃ %G ỹ,

UT∪GG (x̃)− UT∪GG (ỹ) ≥ UT∪GG (z̃)− UT∪GG (w̃) ⇐⇒ x̃	 ỹ �G z̃ 	 w̃ .

Proof. Let θ ∈ X be such that M �T θ �T m for some m,M ∈ X. Consider the utilities

image under UT∪GT and UT∪GG ,

ET,G = { (UT∪GT (t), UT∪GG (t)) | t ∈ X } .

By assumption, θ is neither unanimously maximal nor unanimously minimal for %T ,%G.

Thus according to Lemma 2 the image in ET,G of its indifference class under %T ,

{(UT∪GT (t), UT∪GG (t)) | UT∪GT (t) = UT∪GT (θ)}, is a non-degenerate interval. By Lemma 6, this

image is further connected in int(ET,G), and by Lemma 13 it contains interior points. Hence

there are outcomes a, a′ ∼T θ, which images, (UT∪GT (a), UT∪GG (a)) and (UT∪GT (a′), UT∪GG (a′)),

are in int(ET,G), and UT∪GG (a) > UT∪GG (a′). By the same arguments, the images of the

indifference classes of a and a′ under %G,

{(UT∪GT (t), UT∪GG (t)) | UT∪GG (t) = UT∪GG (a)} and {(UT∪GT (t), UT∪GG (t)) | UT∪GG (t) = UT∪GG (a′)},
are connected in int(ET,G), and there exist outcomes b, b′ ∈ X, which images, (UT∪GT (b), UT∪GG (b))

and (UT∪GT (b′), UT∪GG (b′)), are also in int(ET,G), such that UT∪GG (b) = UT∪GG (a),

UT∪GG (b′) = UT∪GG (a′), and UT∪GT (b), UT∪GT (b′) > UT∪GT (θ).

Let t1 denote an outcome for which UT∪GG (t1) = UT∪GG (a′) and

UT∪GT (t1) = min (UT∪GT (b), UT∪GT (b′)). Such an outcome exists on account of connectedness of

{(UT∪GT (t), UT∪GG (t)) | t ∼G a′}. Note that UT∪G(t1) > UT∪G(a′) since UT∪GT (t1) > UT∪GT (a′).

Set y1 to be an outcome such that UT∪GG (y1) = UT∪GG (a′) and

UT∪GT (y1) = min (UT∪GT (t1), U
T∪G
T (a) + 1

2(UT∪GG (a)− UT∪GG (a′))). Connectedness again implies

that such an outcome y1 exists. By the choice of utilities is satisfies,

UT∪G(a′) < UT∪G(y1) = UT∪GT (y1) + UT∪GG (y1)

< UT∪GT (a) + UT∪GG (a)− UT∪GG (a′) + UT∪GG (a′) = UT∪G(a) .

Let r denote an outcome such that UT∪GT (r) = UT∪GT (θ) and UT∪GG (r) = UT∪G(y1) −
UT∪GT (θ), therefore UT∪G(r) = UT∪G(y1). Observe that since y1 was chosen so that UT∪G(a′) <

UT∪G(y1) < UT∪G(a), then UT∪GG (a′) < UT∪GG (r) < UT∪GG (a). Therefore such an outcome r

indeed exists, following connectedness arguments as detailed above. As the utilities indifference

curve of θ according to %T is connected in int(ET,G), and the images of a and a′ are in that
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interior, the image of r must lie in int(ET,G) as well. Therefore there exists an outcome

y2 with UT∪G(y1) − UT∪GG (a) < UT∪GT (y2) < UT∪GT (θ) and UT∪G(y2) = UT∪G(y1) (so that

UT∪GG (a′) < UT∪GG (y2) < UT∪GG (a)), such that there also exists y∗ with UT∪GT (y∗) = UT∪GT (y2)

and UT∪GG (y∗) = UT∪GG (a′). Set y∗ ∈ X to be an outcome such that UT∪GT (y∗) = UT∪GT (y1)

and UT∪GG (y∗) = UT∪GG (y2). Such an outcome exists on account of the same connectedness

arguments as above.

Altogether, following the definitions of y∗ and y∗, together with connectedness of images

of indifference classes within ET,G (Lemma 2), for every (u1, u2) ∈ (UT∪GT (y∗), U
T∪G
T (y∗)) ×

(UT∪GG (y∗), U
T∪G
G (y∗)) there exists an outcome t ∈ X such that UT∪GT (t) = u1 and UT∪GG (t) =

u2. This proves part (1) of the lemma.

For part (2) of the lemma, let x̃, ỹ, z̃, and w̃ be outcomes that satisfy x̃ �T ỹ, y∗ �T

x̃, ỹ, z̃, w̃ �T y∗. Set x, y, z, w to be outcomes which obtain the following utilities (and which

existence is guaranteed as explained in the previous paragraphs):

UT∪GT (x) = UT∪GT (x̃) , UT∪GG (x) = UT∪GG (y∗)

UT∪GT (y) = UT∪GT (ỹ) , UT∪GG (y) = UT∪GT (x) + UT∪GG (x)− UT∪GT (y)

UT∪GT (z) = UT∪GT (z̃) , UT∪GG (z) = UT∪GG (x)

UT∪GT (w) = UT∪GT (w̃) , UT∪GG (w) = UT∪GG (y)

The above choice of utilities, together with the assumed equality of utility differences,

imply:

x ∼T x̃ , y ∼T ỹ , z ∼T z̃ , w ∼T w̃ ,

x ∼G z , y ∼G w ,

x ∼T∪G y .

Therefore, by definition, x 	 y �T z 	 w if and only if w %T∪G z, in other words, if and

only if, UT∪GT (w) + UT∪GT (x) + UT∪GG (x) − UT∪GT (y) ≥ UT∪GT (z) + UT∪GG (x), or equivalently,

UT∪GT (x) − UT∪GT (y) ≥ UT∪GT (z) − UT∪GT (w). Therefore, by the respective indifference of

x, y, z, w to x̃, ỹ, z̃, w̃ according to %T , x̃ 	 ỹ �T z̃ 	 w̃, if and only if, UT∪GT (x̃) − UT∪GT (ỹ) ≥
UT∪GT (z̃)− UT∪GT (w̃).

Symmetric arguments prove part (3) of the lemma, by employing x which obtains UG∪TT (x) =

UT∪GT (y∗).

�

Lemma 11. Let θ ∈ X be such that M �T θ �T m for some m,M ∈ X. Then there

are x∗, x∗ ∈ X, x∗ �T θ �T x∗, such that for every x̃, ỹ, z̃, w̃ ∈ X, x̃ �T ỹ, that satisfy
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x∗ �T x̃, ỹ, z̃, w̃ �T x∗,

UNT (x̃)− UNT (ỹ) = UNT (z̃)− UNT (w̃) ⇐⇒
UT∪GT (x̃)− UT∪GT (ỹ) = UT∪GT (z̄)− UT∪GT (w̃) .

Proof. According to Lemma 10 there are outcomes y∗ �T y∗, satisfying y∗ �T θ �T y∗, such

that for every (u1, u2) ∈ (UNT (y∗), U
N
T (y∗))×(UNN\T (y∗), U

N
N\T (y∗)), there exists an outcome t ∈

X such that UNT (t) = u1 and UNN\T (t) = u2. In the same manner, there are outcomes z∗ �T z∗,
z∗ �T θ �T z∗, such that for every (u1, u2) ∈ (UT∪GT (z∗), U

T∪G
T (z∗))× (UT∪GG (z∗), U

T∪G
G (z∗)),

there exists an outcome t′ ∈ X such that UT∪GT (t′) = u1 and UT∪GG (t′) = u2. Set x∗ = y∗ if

z∗ %T y∗ and x∗ = z∗ otherwise, and set x∗ = y∗ if y∗ %T z∗ and x∗ = z∗ otherwise. These

outcomes also satisfy x∗ �T θ �T x∗.
Let x̃, ỹ, z̃, and w̃ be outcomes that satisfy x̃ �T ỹ, x∗ �T x̃, ỹ, z̃, w̃ �T x∗, and UNT (x̃) −

UNT (ỹ) = UNT (z̃)−UNT (w̃). Set x, y, z, w, x′, y′, z′, w′ to be outcomes which obtain the following

utilities (and which existence is guaranteed as explained in the previous paragraphs):

UNT (x) = UNT (x̃) , UNN\T (x) = UNN\T (y∗)

UNT (y) = UNT (ỹ) , UNN\T (y) = UNT (x̃) + UNN\T (y∗)− UNT (ỹ)

UNT (z) = UNT (z̃) , UNN\T (z) = UNN\T (y∗)

UNT (w) = UNT (w̃) , UNN\T (w) = UNT (x̃) + UNN\T (y∗)− UNT (ỹ)

UT∪GT (x′) = UT∪GT (x̃) , UT∪GG (x′) = UT∪GG (z∗)

UT∪GT (y′) = UT∪GT (ỹ) , UT∪GG (y′) = UT∪GT (x̃) + UT∪GG (z∗)− UT∪GT (ỹ)

UT∪GT (z′) = UT∪GT (z̃) , UT∪GG (z′) = UT∪GG (z∗)

UT∪GT (w′) = UT∪GT (w̃) , UT∪GG (w′) = UT∪GT (x̃) + UT∪GG (z∗)− UT∪GT (ỹ)

The above choice of utilities, together with the assumed equality of utility differences,

UNT (x̃)− UNT (ỹ) = UNT (z̃)− UNT (w̃), imply:

x ∼T x′ , y ∼T y′ , z ∼T z′ , w ∼T w′ ,
x ∼N\T z , y ∼N\T w ,

x′ ∼G z′ , y′ ∼G w′ ,
x ∼N y , z ∼N w , x′ ∼T∪G y′ .

Consistency of Social tradeoffs then entails that z′ ∼T∪G w′ , resulting in,

UT∪GT (z̃) − UT∪GT (w̃) = UT∪GT (x̃) − UT∪GT (ỹ), as required. Assuming that conclusion will in

turn, using the same arguments, yield the same utility differences for UNT .

�
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Since both functions, UT∪GT and UNT , represent %T , then local equality of utility differences

implies that for every θ ∈ X such that M �T θ �T m for some m,M ∈ X, there are

x∗ �T θ �T x∗ and β, τ ∈ R, β > 0, such that on {t ∈ X | x∗ �T t �T x∗}, UT∪GT = βUNT + τ .

Applying that conclusion to outcomes θ with overlapping preference-intervals yields that the

same is true globally.

5.3 Proof of Proposition 3

Lemma 12. Let θ ∈ X be such that M �T θ �T m for some m,M ∈ X. Then there are

y∗, y∗ ∈ X, y∗ �T θ �T y∗, such that for every x̃, ỹ, z̃, w̃ ∈ X that satisfy y∗ �T x̃ �T ỹ �T y∗
and y∗ �T z̃ �T w̃ �T y∗, there are x′, y′, z′, w′, y′′, w′′ ∈ X, such that,

x′ ∼T x̃ , y′ ∼T ỹ , z′ ∼T z̃ , w′ ∼T w̃ ,

x′ ∼H y′ ∼H z′ ∼H w′ ,

y′′ ∼T\H y′ , w′′ ∼T\H w′ ,

y′′ ∼T x̃ .

Proof. Consider the mapping (UTT\H , U
T
H) : X → R2, and denote its range by ET\H,H =

{(UTT\H(x), UTH(x)) | x ∈ X }. According to the proof of Lemma 5, every point in the relative

interior of the utility indifference curve {(UTT\H(x), UTT (x)) | x ∈ X, UTT\H(x) + UTT (x) =

UTT\H(θ) + UTT (θ)} is also in int(ET\H,H). Therefore, if there is more than one point in this

set, there exists a point θ̂ ∈ int(ET\H,H), with θ̂ ∼T θ.
Suppose on the contrary that {(UTT\H(x), UTH(x)) | x ∈ X, UTT\H(x) +UTH(x) = UTT\H(θ) +

UTH(θ)} is a singleton. Hence (UTT\H(θ), UTH(θ)) /∈ int(ET\H,H), and int(ET\H,H) contains

no points (a, t) such that a + t = UTT\H(θ) + UTH(θ). By assumption, θ is not unanimously

minimal nor unanimously maximal. Hence Agreed Improvement (A3) implies that there is

(a, t) ∈ ET\H,H such that a > UTT\H(θ) and t > UTH(θ). According to the proof of Lemma 3,

every neighborhood of (a, t) intersects int(ET\H,H), therefore there is (a′, t′) ∈ int(ET\H,H)

such that a′ + t′ > UTT\H(θ) + UTH(θ). Analogously there is (b′, s′) ∈ int(ET\H,H) such that

b′ + s′ < UTT\H(θ) + UTH(θ).

Consider the sets {(a, t) ∈ int(ET\H,H) | a+t > UTT\H(θ)+UTH(θ)} and {(b, s) ∈ int(ET\H,H) | b+
s < UTT\H(θ) + UTH(θ)}. According to the previous paragraph these sets are non-empty,

and following the contrary assumption they form a partition of int(ET\H,H). However, this

constitutes a contradiction to int(ET\H,H) being connected (Lemma 4). Therefore {(UTT\H(x), UTH(x)) | x ∈
X, UTT\H(x) +UTH(x) = UTT\H(θ) +UTH(θ)} cannot be a singleton. Since it is connected (as the

image of a connected set under a continuous transformation), its relative interior is non-empty,

hence there is θ̂ ∼T θ such that θ̂ ∈ int(ET\H,H).

Since θ̂ is an interior point of ET\H,H , there are x1, y1 ∈ X such that x1, y1 ∼H θ̂, x1 �T

θ̂ �T y1. If (UTT\H(y1), UT (x1) − UTT\H(y1)) ∈ ET\H,H , set y∗ = x1, y∗ = y1. Otherwise let
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x2, y2 be outcomes such that x2, y2 ∼H θ̂,

UTT\H(x2) = 1
2

(
UTT\H(θ̂) + UTT\H(x1)

)
, UTT\H(y2) = 1

2

(
UTT\H(θ̂) + UTT\H(y1)

)
. Such outcomes

exist on account of Lemma 2.

If (UTT\H(y2), UT (x2) − UTT\H(y2)) ∈ ET\H,H , set y∗ = x2, y∗ = y2, otherwise set x3, y3

in the same manner, and so on. As there is a neighborhood of θ̂ contained in ET\H,H , and

(UTT\H(θ̂), UT (θ̂)− UTT\H(θ̂)) is in ET\H,H , the process will stop after a finite number of steps.

Namely, there are xk, yk ∼H θ̂, xk �T θ̂ �T yk, hence also xk �T\H θ̂ �T\H yk, such that

(UTT\H(yk), UT (xk)− UTT\H(yk)) ∈ ET\H,H . Set y∗ = xk, y∗ = yk.

By connectedness of all utility indifference curves, and Lemma 2, for every (a, t) such that

t ≥ UTH(θ̂), UTT\H(y∗) ≥ a ≥ UTT\H(y∗), and a + t ≤ UTT\H(y∗) + UTH(y∗) there is z ∈ X

such that UTT\H(z) = a and UTH(z) = t. For any outcomes x̃ �T ỹ and z̃ �T w̃, such that

y∗ �T x̃, ỹ, z̃, w̃ �T y∗, let x′, y′, z′, w′, y′′, w′′ be outcomes such that,

UTH(x′) = UTT (θ̂) , UTT\H(x′) = UT (x̃)− UTH(θ̂) ,

UTH(y′) = UTT (θ̂) , UTT\H(y′) = UT (ỹ)− UTH(θ̂) ,

UTH(y′′) = UT (x̃)− UTT\H(y′) , UTT\H(y′′) = UTT\H(y′) ,

UTH(z′) = UTH(θ̂) , UTT\H(z′) = UT (z̃)− UTH(θ̂) ,

UTH(w′) = UTH(θ̂) , UTT\H(w′) = UT (w̃)− UTH(θ̂) ,

UTH(w′′) = UTH(y′′) , UTT\H(w′′) = UTT\H(w′) .

According to the above, these outcomes exist. By choice of the utilities they satisfy,

x′ ∼T x̃ , y′ ∼T ỹ , z′ ∼T z̃ , w′ ∼T w̃ ,

x′ ∼H y′ ∼H z′ ∼H w′ ,

y′′ ∼T\H y′ , w′′ ∼T\H w′ ,

y′′ ∼T x̃ .

�

Employing the above lemma we turn to prove that UNT and UT that is obtained as the

additive representation of %H and %T\H maintain local equality of utility differences.

Lemma 13. Let θ ∈ X be such that M �T θ �T m for some m,M ∈ X. Then there

are x∗, x∗ ∈ X, x∗ �T θ �T x∗, such that for every x̃, ỹ, z̃, w̃ ∈ X, x̃ �T ỹ, that satisfy

x∗ �T x̃, ỹ, z̃, w̃ �T x∗,

UNT (x̃)− UNT (ỹ) = UNT (z̃)− UNT (w̃) ⇐⇒
UT (x̃)− UT (ỹ) = UT (z̃)− UT (w̃) .
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Proof. The previous lemma establishes that there are outcomes y∗, y∗, y
∗ �T θ̂ �T y∗, such

that for any outcomes x̃ �T ỹ and z̃ �T w̃, that satisfy y∗ �T x̃, ỹ, z̃, w̃ �T y∗, there are

outcomes x′, y′, z′, w′, y′′, w′′ that satisfy,

x′ ∼T x̃ , y′ ∼T ỹ , z′ ∼T z̃ , w′ ∼T w̃ ,

x′ ∼H y′ ∼H z′ ∼H w′ ,

y′′ ∼T\H y′ , w′′ ∼T\H w′ ,

y′′ ∼T x̃ , w′′ ∼T z̃ .

Moreover, in the same manner as in the proof of Lemma 11, there are z∗, z∗ ∈ X, z∗ �T

θ �T z∗, such that whenever outcomes x̃ �T ỹ and z̃ �T w̃ satisfy y∗ �T x̃, ỹ, z̃, w̃ �T y∗, there

are outcomes x′′′, y′′′, z′′′, w′′′ for which,

x′′′ ∼T x̃ , y′′′ ∼T ỹ , z′′′ ∼T z̃ , w′′′ ∼T w̃ ,

x′′′ ∼N\T z′′′ , y′′′ ∼N\T w′′′ ,
x′′′ ∼N y′′′ .

If z∗ %T y∗ set x∗ = y∗, otherwise set x∗ = z∗. Similarly, if y∗ %T z∗ set x∗ = y∗, otherwise

set x∗ = z∗. Let x̃, ỹ, z̃, w̃ be outcomes that satisfy x∗ �T x̃, ỹ, z̃, w̃ �T x∗ and x̃ �T ỹ. Then

there are outcomes x′, y′, z′, w′, outcomes x′′, y′′, z′′, w′′, and outcomes x′′′, y′′′, z′′′, w′′′, which

satisfy,

x′ ∼T x̃ , y′ ∼T ỹ , z′ ∼T z̃ , w′ ∼T w̃ , (2)

x′ ∼H y′ ∼H z′ ∼H w′ ,

x′′ = x′ , y′′ ∼T\H y′ , z′′ = z′ , w′′ ∼T\H w′ , (3)

x′′ ∼H z′′ , y′′ ∼H w′′ ,

x′′ ∼T y′′ ,

x′′′ ∼T x̃ , y′′′ ∼T ỹ , z′′′ ∼T z̃ , w′′′ ∼T w̃ , (4)

x′′′ ∼N\T z′′′ , y′′′ ∼N\T w′′′ ,
x′′′ ∼N y′′′ .

First, suppose UT (x̃)−UT (ỹ) = UT (z̃)−UT (w̃). The same equality then holds for x′, y′, z′, w′

and x′′′, y′′′, z′′′, w′′′. Under that equality of utility differences, indifference relationships (2) and

(3) imply z′′ ∼T w′′. Hence, by definition, x′ 	 y′ 'T\H z′ 	 w′.
On the other hand, indifference relationships (4) imply that the tradeoff between x′′′ and y′′′

is �T -comparable to the tradeoff between z′′′ and w′′′: x′′′	y′′′ �T z′′′	w′′′ ⇐⇒ w′′′ %N z′′′.
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As x′ ∼T x′′′, y′ ∼T y′′′, z′ ∼T z′′′, and w′ ∼T w′′′, and according to the definition of tradeoffs

comparison, this is equivalent to, x′ 	 y′ �T z′ 	 w′ ⇐⇒ w′′′ %N z′′′. However, since

x′	y′ 'H z′	w′ (as they are all %H indifferent, and x′	x′ 'H x′	x′) and x′	y′ 'T\H z′	w′,
Tradeoff Pareto (A6) implies that necessarily also x′ 	 y′ 'T z′ 	 w′, and therefore it must

be that w′′′ ∼N z′′′. Translating that indifference to the additive representation of %N using

T and N \ T , and employing the indifference relationships x′′′ ∼N\T z′′′, y′′′ ∼N\T w′′′, and

x′′′ ∼N y′′′,

UN (z′′′) = UN (w′′′) ⇐⇒
UNT (z′′′) + UNN\T (z′′′) = UNT (w′′′) + UNN\T (w′′′) ⇐⇒

UNT (z′′′)− UNT (w′′′) = UNN\T (w′′′)− UNN\T (z′′′) ⇐⇒

UNT (z′′′)− UNT (w′′′) = UNN\T (y′′′)− UNN\T (x′′′) ⇐⇒

UNT (z′′′)− UNT (w′′′) = UNT (x′′′)− UNT (y′′′) .

Since x′′′ ∼T x̃ , y′′′ ∼T ỹ , z′′′ ∼T z̃, and w′′′ ∼T w̃, it follows that, UNT (z̃) − UNT (w̃) =

UNT (x̃)− UNT (ỹ), as required.

In the other direction, suppose UNT (x̃)−UNT (ỹ) = UNT (z̃)−UNT (w̃). Employing indifference

relationships (4) it follows that z′′′ ∼N w′′′, and therefore x′′′ 	 y′′′ 'T z′′′ 	 w′′′, which

is equivalent to x′ 	 y′ 'T z′ 	 w′, as x′ ∼T x′′′, y′ ∼T y′′′, z′ ∼T z′′′, and w′ ∼T w′′′.

In addition, (3) implies that x′′ 	 y′′ �T\H z′′ 	 w′′ ⇐⇒ w′′ %T z′′, or, equivalently,

x′ 	 y′ �T\H z′ 	 w′ ⇐⇒ w′′ %T z′′. Similarly to the above, Tradeoff Pareto (A6)

implies that x′ 	 y′ 'T\H z′ 	 w′, hence it must be that w′′ ∼T z′′. Substituting using

the additive representation UT = UTH + UTT\H and the relationships in (2) and (3), it follows

that UT (x′)− UT (y′) = UT (z′)− UT (w′), and the same then holds for x̃, ỹ, z̃ and w̃. �

In the same manner as in the proof of Proposition 2, as both functions, UT and UNT ,

represent %T , then local equality of utility differences implies that for every θ ∈ X such that

M �T θ �T m for some m,M ∈ X, there are x∗ �T θ �T x∗ and γ, ξ ∈ R, γ > 0, such that

on {t ∈ X | x∗ �T t �T x∗}, UNT = γUT + ξ. Applying that conclusion to outcomes θ with

overlapping preference-intervals yields that the conclusion holds globally.
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