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Abstract

Billot, Gilboa, Samet and Schmeidler [1] (BGSS) offer a model for the

formation of a prior probability over states of nature based on data. According

to their model, the decision maker possesses a similarity function over observations,

and, given a database, adopts the prior that is the similarity-weighted frequency

of outcomes within that database. BGSS thus simplify the task of forming a

prior probability over states, reducing it to the question of forming a similarity

function over observations. Still, the task of forming a similarity function

remains, and may not always be straightforward. We characterize two relatively

simple procedures for the formation of a similarity function, one which requires

placing observations on an integer scale, and the other which is essentially

ordinal.
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1 Introduction

In classic models of decision making under uncertainty a decision maker faces alternatives

which may yield different outcomes depending on a state of nature that will be

realized. The Bayesian approach models such a decision maker as evaluating alternatives

using a prior probability over the states of nature. Facing a decision problem the

decision maker therefore needs to form such a prior probability.

Billot, Gilboa, Samet and Schmeidler [1] (BGSS) examine a decision maker facing

a current problem in which various outcomes (states of nature) can be realized. The

decision maker has access to a database of past cases that may be relevant to the

current problem considered, and forms a prior probability over the outcomes that may

be realized based on these data. BGSS describe a decision maker whose prior is formed

on the basis of a similarity function, a function returning, for each observation, the

degree to which this observation is relevant to the current case under consideration.

According to the BGSS model, given a database, the prior formed by the evaluator will

be the similarity-weighted frequency of occurrences of outcomes over that database.

The problem of forming a data-based prior is therefore reduced to the problem of

ascribing similarity values to observations.

Assigning values to express the degree of relevance of observations to a current

case may sometimes be easy, for example if all available observations are deemed

equally relevant to the problem at hand or if only observations whose attributes are

identical to those of the current problem are considered relevant. Alternatively, the

similarity function can be estimated empirically. Such an empirical approach is taken

in Gilboa, Lieberman, and Schmeidler [2], where a statistical theory for estimating

the similarity function is developed, and further implemented in Gayer, Gilboa and

Lieberman [3] in the context of real estate pricing. However, the empirical method

requires the specification of a functional form of the similarity function, which is

not always straightforward. Therefore in some situations the question of forming a

similarity function remains difficult.

We characterize axiomatically two simple procedures for assigning similarity values
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to attribute vectors. The first procedure consists in placing similarity values on

an integer scale, namely assigning a number k ∈ {0, 1, 2, . . .} to each observation,

yielding a similarity function that is measured in finite resolution. The second is

ordinal, requiring the decision maker to order observations according to their degree

of relevance to the current case under consideration.

2 Setup

We first present the model of BGSS that is adjusted to our framework. In BGSS

an individual is interested in predicting the outcome (or state of nature) ω ∈ Ω that

will obtain in a current problem, by forming a probabilistic belief over (Ω, 2Ω). It is

assumed, in BGSS [1] as well as in this paper, that Ω is finite and |Ω| ≥ 3.

When forming a belief, the individual draws upon experience in similar past cases,

which we refer to as the individual’s private database. An observation in this database

is characterized by a list of attributes that were observed in a past case, and that

are believed to affect the probability of outcomes. An observation is therefore a pair

(a, ω), where a is that observation’s vector of attributes, and ω ∈ Ω is its realized

outcome. It is assumed here that attributes a ∈ A may take on only a finite number

of values, restricting them to be discrete variables (this may also include continuous

variables that are given in a finite resolution). For example, within observations

that describe patients, attributes may include age, gender, and blood pressure level -

low/normal/high. A database is a finite sequence of observations, D ∈ (A × Ω)r for

r ∈ N, r ≥ 1, where D =
⋃

r≥1(A× Ω)r denotes the set of all possible databases.

The problem under consideration is characterized by the same attributes that

characterize observations in the database. The individual forms a probability over

possible outcomes ω ∈ Ω given the attributes of the current problem, where this

probability is a function of the information available to him or her. That is, if ∆(Ω)

denotes the set of all possible probabilities over (Ω, 2Ω), then the individual’s priors

is a function p : D −→ ∆(Ω), so that when the database available to the individual

is D ∈ D, she or he forms a probability pD ∈ ∆(Ω). Note that the attributes

characterizing the current problem are a feature of the evaluation problem, and are
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independent of the database available to the individual.

In the probability assessment problem that was axiomatized in BGSS [1] the

individual judges the degree of relevance of each past observation (a, ω) to the problem

at hand, quantifying this relevance by a similarity value s(a) > 0 assigned to each

possible vector a of attributes. Allowing only positive similarity values reflects a

presumption that the individual’s probability is not based on cases that are expected

to yield opposite outcomes to those in the current case, and moreover, every observation

has some influence on the resulting probability (values are strictly positive). Similarity

values attached to attribute vectors a ∈ A will typically depend on the attributes of

the current problem, with higher similarity values associated with attributes a that are

deemed closer to those of the current problem, thus more relevant for the evaluation

question at hand. This is in accordance with the underlying reasoning that from

causes which appear similar we expect similar effects (a principal that is attributed

to Hume).

The axioms in BGSS characterize a priors function that is a similarity-weighted

frequency over available data. That is, under the BGSS model there exists a similarity

function s : A× Ω −→ R++, such that for every database D ∈ D and every ω′ ∈ Ω,

pD(ω′) =

∑
(a,ω)∈D s(a)1(ω = ω′)∑

(a,ω)∈D s(a)
,

where 1(ω = ω′) is an indicator function that assumes the value 1 if ω is equal to

ω′, and zero otherwise.1 Note that the similarity is independent of the outcome ω,

expressing the fact that the degree to which past cases are relevant for the current

problem is the result of the similarity in characteristics, and cannot change if the

realized outcome was different. 2

For our purposes we supplement the above with the possibility that some observations

are completely irrelevant to the question at hand. These irrelevant observations will

have no effect on the resulting prior probability and will be assigned a similarity of

1The basic BGSS prior, characterized by two axioms, is somewhat more general, but in their

paper two additional, simple axioms are listed that yield the specific form that we use.
2This independence follows from the assumption suggested in BGSS [1] that permuting the states

of nature results in a corresponding permutation of the probability vector.
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zero, however, they allow for more flexibility in assigning similarity values. In the

second type of similarity that we characterize they will serve as a starting point for

the ordering of similarity values in increasing relevance order. The next definition

identifies irrelevant databases.

Definition 1. A database E is irrelevant according to the evaluator if for every

database D ∈ D, pD = pD◦E. Otherwise E is relevant.

Given a database D, the individual will be able to form a meaningful prior

probability so long as D contains information that is relevant to the question at

hand. If the individual considers D to be irrelevant, he or she will return a fixed,

predetermined prior (for instance, a uniform distribution as a response to the lack of

information in D).

With irrelevant databases as a possibility, the Concatenation axiom that appears

in BGSS [1] needs to be adjusted:

Concatenation of Relevant Databases (CRD). Let D,E ∈ D be two relevant

databases, then D ◦ E is also relevant, and pD◦E = λpD + (1− λ)pE, for λ ∈ (0, 1).

According to the definition of an irrelevant database, if two databases D and E are

irrelevant thenD◦E is irrelevant as well. In the other direction, the definition together

with the above version of Concatenation implies that a database D is irrelevant if

and only if any sub-database of it is irrelevant as well. In particular, D is irrelevant

if and only if each of its observations is irrelevant. Observations that are perceived

as irrelevant are assigned a zero similarity value within the model. The similarity in

our framework thus obtains nonnegative, but not necessarily positive, values.

Leshno (2014) generalizes BGSS to apply to databases that belong to different

classes of relevance which are ordered lexicographically. Leshno (2014) and the present

paper share the feature that any amount of irrelevant observations is overwhelmed by

just a single relevant observation. However, while Leshno (2014) allows the prior that

is based on irrelevant information to still vary depending on that data, interpreting

irrelevant information as belonging to a different relevance class, we choose to set
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the prior based on irrelevant information to a fixed one that is interpreted as the

evaluator’s response to lack of information.

The characterization of probabilistic beliefs in BGSS [1], when supplemented

with irrelevant observations and under the adjusted Concatenation axiom, implies

an individual whose prior probability given a database is the similarity-weighted

frequency over that database, as specified in the assumption below. To keep the

discussion interesting, the assumption also states that not all databases are irrelevant.

Assumption 1. There exists a similarity function s : A × Ω −→ R+, unique up to

multiplication by a positive number, satisfying:

(i) For every (a, ω), s(a) = 0 if and only if (a, ω) is irrelevant

(ii) There exists a∗ ∈ A with s(a∗) > 0

(iii) If D ∈ D is relevant, then,

∀ω′ ∈ Ω pD(ω′) =

∑
(a,ω)∈D s(a)1(ω = ω′)∑

(a,ω)∈D s(a)
. (1)

Otherwise, pD = p0 for a fixed p0 ∈ ∆(Ω).

To simplify notation we denote the sum over the similarity values in a database D

by s(D) =
∑

(a,ω)∈D s(a). Under the above assumption, it obtains that D is relevant

if and only if s(D) > 0.

The representation in Assumption 1 is obtained by first setting aside all irrelevant

observations and applying the result in BGSS [1]. Next, these observations are added

back by setting their similarities to zero, which corresponds to them not modifying

the probability given any database. Finally the original order of observations in any

database (mixing relevant and irrelevant observations in any order) can be restored

due to the Invariance axiom (see BGSS [1] for that axiom). In accordance with the

prior (1), the probability of an event F given a relevant database D is,

pD(F ) =

∑
(a,ω)∈D s(a)1(ω ∈ F )∑

(a,ω)∈D s(a)
.

6



In the simple case where the similarity function is constant, the probability of

a state is evaluated by its frequency of occurrence in the entire data. If, on the

other hand, a positive weight is assigned only to observations whose attributes are

identical to those of the current problem, the probability of a state is evaluated by

the frequency of occurrence of that state within identical observations alone. In

general, the evaluated probability of a state is a weighted average of the frequency

of occurrence in the data, with weights that are determined by the similarity of the

observations to the current case.

3 Finite Resolution Similarity

The first procedure that we characterize simplifies the assignment of similarity values

by requiring the evaluator to set those values on an integer scale. Namely, for every

observation, depending on its attributes, the similarity value ascribed should be

chosen out of {0, 1, 2, . . .}. If there is no specific functional form that the evaluator

adopts for her or his similarity function it is easier to choose a value to express a

degree of relevance from among a limited, simple set of values, than to choose when

every nonnegative value is possible.

As a similarity function is unique up to multiplication by a positive number,

adopting an integer-scaled similarity function is the same as adopting a similarity

function that only obtains values of the form kδ, k ∈ N, for δ > 0. An integer-

scaled similarity function is thus in fact a similarity function that is measured in

finite resolution. We therefore term this similarity a finite resolution similarity .

A finite resolution similarity is characterized by one axiom, stated below (on top

of the BGSS axioms). Additional notation is needed for the statement of the axiom:

for a database D and a positive integer k, kD = D ◦ . . . ◦D︸ ︷︷ ︸
k times

is the database composed

of k copies of D.

Equatability. For outcomes ω, ω′ ∈ Ω and databases D,E ∈ D, if pD(ω) > pD(ω′)

and pE(ω′) > pE(ω) then there are m, k ∈ N such that p(mD)◦(kE)(ω) = p(mD)◦(kE)(ω
′).
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Proposition 1. Suppose p : D −→ ∆(Ω) that satisfies Assumption 1. Then Equatability

is satisfied, if and only if, s can be chosen so that s(a) ∈ {0, 1, 2, ...} for every a ∈ A.

4 Simple Ordering Similarity

In this section we characterize a similarity which is a special case of the one in the

previous section. This similarity is the result of an ordinal procedure, consisting in

the individual ordering attribute vectors in an increasing order of degree of relevance.

Under two axioms, this ordering of relevance of attribute vectors induces a similarity

function which assigns a value of zero to irrelevant attribute vectors, 1 to the attribute

vectors that are next in order, 2 to the ones next above, and so on. We use the term

simple ordering similarity to describe such a similarity function.

The characterization of an individual employing a simple ordering similarity consists

of two axioms (in addition to the axioms that characterize a similarity-weighted

frequency individual as in Assumption 1). First, we suppose that an irrelevant

observation exists. This is employed as a starting point for ordering attribute vectors

that are relevant to varying degrees.

Irrelevant Observation (IO). There exists an observation (a0, ω) such that for

every database D, pD = pD◦{(a0,ω)}.

Together with the other BGSS axioms, Irrelevant Observation implies that for

some vector of attributes a0, s(a0, ω
′) = 0 for every ω′ ∈ Ω.

Next, we postulate that in specific kinds of ranking reversals there are attribute

vectors that can induce equality of probabilities. The reversals under considerations

are those in which one outcome is more probable than another given a database, but

this ranking is reversed given a database when just one observation with the more
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probable outcome occurred under different attributes, then there is a third set of

attributes with which the two outcomes are equally probable.

Attribute Equatability (AE). For outcomes ω, ω′ ∈ Ω, attribute vectors a, c ∈ A,

and a database D ∈ D, if

pD◦(a,ω)(ω) > pD◦(a,ω)(ω
′) but pD◦(c,ω)(ω

′) > pD◦(c,ω)(ω) ,

then there exists an attributes vector b ∈ A such that pD◦(b,ω)(ω) = pD◦(b,ω)(ω
′).

An individual forming a similarity-weighted frequency prior satisfies the above

two axioms, if and only if, this individual’s similarity is a simple ordering similarity.

This is stated in the following theorem.

Theorem 1. Suppose p : D −→ ∆(Ω) that satisfies Assumption 1. Then (IO) and

(AS) are satisfied, if and only if, s can be chosen so that s(A) = {0, 1, ..., k} for

some k ∈ N, k > 0. Moreover, this choice is unique up to multiplication by a positive

number.

According to this theorem, an individual who wishes to form a prior over outcomes

according to the data-based similarity-weighted frequency rule, and who finds the two

axioms above appealing, needs only to pinpoint an irrelevant attribute vector and

then continue to order all other attribute vectors in an increasing order of degree of

relevance. The similarity that would then generate this individual’s data-based priors

is the one assigning the value k to the attributes vector that is k-th in order. Under

the two axioms above the procedure of forming a data-based prior over outcomes is

therefore greatly simplified, as it boils down to an ordinal task, whereby attribute

vectors are ordered in an increasing degree of relevance.

5 Proofs

5.1 Proof of Proposition 1

Suppose that p : D −→ ∆(Ω) satisfies Assumption 1 and Equatability. Let ω, ω′ ∈ Ω

be two states, and a ∈ A a relevant attributes vector. Then pD(ω) > pD(ω′) for D =
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{(a∗, ω)} and pE(ω′) > pE(ω) for E = {(a, ω′)}. Therefore, by Equatability, there are

m, k ∈ N such that p(mD)◦(kE)(ω) = p(mD)◦(kE)(ω
′), implying, ms(a∗) = ks(a). That

is, for every a ∈ A, s(a) = rs(a∗) for a nonnegative rational number r. By uniqueness

of the similarity function up to multiplication by a positive number, we may multiple

s by a large enough positive integer, and divide it by s(a∗), to obtain that the resulting

similarity values are all nonnegative integers, as stated in the proposition.

In the other direction, suppose that the similarity s obtains only nonnegative

integer values. Suppose that pD(ω) > pD(ω′) and pE(ω′) > pE(ω) for databases

D and E and states ω, ω′ ∈ Ω. Denote by Dω the sub-database in D containing

only observations in which ω is the state that was realized, and similarly for ω′

and for E. Employing the representation in 1, the inequalities over probabilities

translate to: s(Dω) > s(Dω′) and s(Eω′) > s(Eω), where all these similarity values are

integers. Denote s(Dω)− s(Dω′) = k and s(Eω′)− s(Eω) = m, then k,m are positive

integers, and it holds that km = m (s(Dω)− s(Dω′)) = k (s(Eω′)− s(Eω)), hence

ms(Dω)+ks(Eω) = ms(Dω′)+ks(Eω′), which according to the formula for generating

a prior given a database, implies, p(mD)◦(kE)(ω) = p(mD)◦(kE)(ω
′), as required.

5.2 Proof of Theorem 1

Suppose that Assumption 1 holds, and denote the corresponding non-negative similarity

function by s. Assume that IO and AS hold. Since there is a finite number of

attributes vectors, we may order similarity values in an increasing order. Namely,

there are a0, a1, . . . such that s(a0) < s(a1) < . . .. If there is more than one attributes

vector with the same similarity value, then the corresponding ak is one of those

attribute vectors. According to IO, s(a0) = 0, and following the non-degeneracy part

(ii) of Assumption 1, there are at least two attribute vectors, a0 and a1, such that

s(a0) < s(a1).

To show that s is a simple ordering similarity, it should be proved that s(ak) =

ks(a1) for every k. If s(a1) is maximal then this claim is trivially true, so suppose that

s(a1) is not maximal. The proof continues by induction. Consider the database D =
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{(a1, ω), (a2, ω
′)}, and suppose by negation that s(a2) 6= 2s(a1). If s(a2) > 2s(a1),

then since s(a1) > 0 and s(a2) > 2s(a1), it holds that,

pD◦(a2,ω)(ω) > pD◦(a2,ω)(ω
′) ,

pD◦(a1,ω)(ω
′) > pD◦(a1,ω)(ω) .

AS implies that there exists an attributes vector b such that pD◦(b,ω)(ω
′) = pD◦(b,ω)(ω),

that is, such that s(b) = s(a2) − s(a1), hence by the negation assumption, s(a1) <

s(b) < s(a2). Contradiction. If, on the other hand, s(a2) < 2s(a1), then,

pD◦(a1,ω)(ω) > pD◦(a1,ω)(ω
′) ,

pD◦(a0,ω)(ω
′) > pD◦(a0,ω)(ω) ,

which by AS implies that there exists an attributes vector b such that pD◦(b,ω)(ω
′) =

pD◦(b,ω)(ω), hence, s(b) = s(a2) − s(a1), yielding a contradiction, as s(a0) < s(a2) −

s(a1) < s(a1).

Suppose that for every j = 1, . . . , k, s(ak) = ks(a1), and suppose by negation

that s(ak+1) > (k + 1)s(a1). Let D = {(a1, ω), (ak+1, ω
′)}. Following the negation

assumption and the fact that s(a1) > 0,

pD◦(ak+1,ω)(ω) > pD◦(ak+1,ω)(ω
′) ,

pD◦(a1,ω)(ω
′) > pD◦(a1,ω)(ω) .

AS implies that there exists an attributes vector b such that pD◦(b,ω)(ω
′) = pD◦(b,ω)(ω),

hence, s(b) = s(ak+1) − s(a1). However, since by the induction assumption, and by

the negation assumption, s(ak) = ks(a1) < s(ak+1)− s(a1) < s(ak+1), a contradiction

is inflicted.

To rule out the case s(ak+1) < (k + 1)s(a1), consider E = {(ak, ω), (ak+1, ω
′)}.

The inequalities

pE◦(a1,ω)(ω) > pE◦(a1,ω)(ω
′) ,

pE◦(a0,ω)(ω
′) > pE◦(a0,ω)(ω) ,

together with AS, deliver that there exists an attributes vector b such that s(b) =

s(ak+1) − s(ak), which by the preceding assumptions should satisfy, s(a0) < s(b) <
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s(a1). Contradiction. It is thus concluded that s(ak+1) = (k + 1)s(a1), and the

similarity values of s are equally spaced, starting from s(a0) = 0.

In the other direction, IO is immediate. For AS, suppose that for a database D,

pD◦(a,ω)(ω) > pD◦(a,ω)(ω
′) ,

pD◦(c,ω)(ω
′) > pD◦(c,ω)(ω) .

Then it should hold that s(a) > s(D{ω′})−s(D{ω}) > s(c). Since all similarities are

integer-valued, the difference s(D{ω′}) − s(D{ω}) must be an integer. Being between

s(c) and s(a), and since the range of s is an interval within the integers, it must equal

the similarity of some attributes vector.
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