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Abstract

We present an axiomatic model of a process wherein likelihoods of eventualities

are compared based on data. One eventuality is perceived as more likely than

another whenever the data corroborates this conclusion. However, the correct

relevance of records to the eventualities under consideration may be impossible

to ascertain with any degree of surety due to multiple interpretations of the data,

formalized by allowing the evaluator to entertain multiple weighting functions.

The evaluator ranks one eventuality as more likely than another whenever its

total weight over the entire database is higher, according to all relevance-weighting

functions. Otherwise, the comparison is indecisive.
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1 Introduction

1.1 Motivation

There are many instances where people are faced with problems in which they have

to compare the likelihood of several eventualities. These problems can range from

forecasting the weather to predicting the chances of survival of the Eurozone or the

chances of reaching a peace agreement in the Middle East. What is an advisable process

of performing such likelihood comparisons? Is it reasonable to require that the process

always determine whether one eventuality is more likely than another?

The present work, focusing on evaluation methods based on past observations, rests

upon the widely accepted principle that similar circumstances lead to similar outcomes.

One eventuality is considered to be more likely than another if the data corroborate

the occurrence of the former more than they do the latter. An example of this type

of quandary is that of a doctor trying to diagnose a patient’s condition. It would be

simple for the doctor to reach a diagnosis in case he or she has seen many patients with

the exact symptoms as those of the current patient that were successfully diagnosed.

Now suppose that the current patient suffers from many nonspecific symptoms such as

pain, fatigue, and dizziness, symptoms that are common to many medical conditions.

The doctor has seen patients who exhibited part of these symptoms, but not a single

patient who suffered from all of them. Thus the current patient may be suffering from

any one of the illnesses of these past patients or even an illness unfamiliar to the doctor.

In such a situation the doctor may feel uncertain as to the relevance of these past cases

to the current case, and consequently will refrain from making a diagnosis.

This description of a patient with unexplained physical symptoms is not uncommon

to the medical field (with estimates ranging from 15% to 30% of the primary care

consultations; see Kirmayer et al., 2004). Kirmayer et al. (2004) mention several

reasons for the difficulty to diagnose patients, among them non-measurability of symptoms

(e.g. fatigue) that could be attributed to several medical conditions. Support groups of

undiagnosed patients try to promote the formation of a database gathered from people
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who were diagnosed in order to improve the diagnosis process.1,2

It appears that similar difficulties in making comparisons are present in other fields

of medicine. The US Preventive Services Task Force (USPSTF) issues guidelines for

preventive health care services which are broken down by age, gender, medical condition

and other criteria.3 These guidelines are based on evidence that is gathered from

multiple research studies. Some of these studies were conducted on special populations

that differ from the population for which guidelines are intended. Therefore, the

task force determines conditions under which extrapolation and generalization are

reasonable, explicitly including similarities of the populations studied and the population

in question. However for some issues the USPSTF publishes ‘I statements’ where

no recommendation is made, when it concludes that studies are of poor quality or

when they produce conflicting results that do not permit conclusions about likely

benefits and harms (Harris et al., 2001). In such cases the USPSTF advises that

patients be informed about the uncertain balance of benefits and harms, stating that

its recommendation may be altered after gathering more specific observations. Quoting

Harris et al. (2001, p. 27), “Even well-designed and well-conducted studies may not

supply the evidence needed if the studies examine a highly selected population of little

relevance to the general population seen in primary care”. The use of ‘I statements’

therefore appears to imply that uncertainty regarding the relevance of existing data is

one of the primary causes for not making recommendations.

The evaluation process described above contains two major components: first

that the comparison of likelihoods of eventualities depends on past observations, and

second that the evaluator may refrain from comparisons due to the existence of several

plausible methods to analyze or interpret the data. These different interpretations

may lead to diametrically opposite conclusions which would render impossible any

comparison of the likelihoods of the eventualities under consideration. Doctors abstain

from making recommendations to undergo screening tests when they cannot assess the

1See http://www.inod.org/missionobjectives0.html for such a support group’s list of objectives.
2The National Institute of Health (NIH) in the US recognized the severeness of this problem and

initiated the Undiagnosed Diseases Program in 2008 to help people who have long eluded diagnosis.
3See the USPSTF website, http://www.uspreventiveservicestaskforce.org. We thank Irit Dror,

MD, for the USPSTF example.
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benefits and risks, and similarly refrain from making a diagnosis when it is questionable.

Surely in the above medical example it would be preferable that the patient be told

that the doctor could not assess which illness is more likely, rather than being misled

by an arbitrary, poorly-based diagnosis.4

On a related note, there are many situations in which there is an individual or

organization that makes a decision based on evaluations of likelihoods of a separate

party. In those situations the decision maker will generally entertain various considerations

and constraints, of which comparison of likelihoods is but one element. If the evaluator

were to find it impossible to compare some likelihoods, then such difficulty is in itself

informative. The decision maker would typically prefer that this predicament be

revealed rather than have it papered over by an unfounded conclusion. Put differently,

not requiring that every likelihood comparison be determined yields a more flexible

decision process, leaving room for additional normative criteria (for example, the

decision maker may conclude that more data needs to be collected before making

a decision).

This is one of the reasons for the USPSTF published ‘I statements’. Quoting Harris

et al. (2001, p. 31):

...the Task Force has taken a conservative, evidence-based approach ...

refraining from making recommendations when they cannot be supported

by evidence. This is done with the understanding that clinicians and

policymakers must still consider additional factors in making their own

decisions.

The purpose of this essay is to describe an evaluation process wherein data-based

comparisons of likelihoods are performed, but which also allows for non-determinability.

The data are comprised of separate past cases, whose relevance to the case that is being

examined varies, and may be unclear. Eventualities are compared by evaluating the

4If the doctor could assign a weight to each interpretations of the data (standing for the probability
that it obtains), his or her ranking of eventualities could be completed using these second-order
weights. Incompleteness emerges precisely when the evaluator cannot form such weights (as is the
case in Bewley (2002)).
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weight lent by the database to their likelihoods of occurrence in the current case. While

there may be varied reasons for failing to make a comparison, in the problems we have

in mind incomparability is caused by conflicting interpretations of the data. When

several plausible interpretations of the data lead to opposite conclusions, inability to

make a valid comparison obtains. On the other hand, if all interpretations of the data

are aligned a ranking of likelihoods is issued.

1.2 The Model

The model of Inductive Inference (Gilboa and Schmeidler, 2003; henceforth abbreviated

GS) serves as alternative to expected utility paradigm, that can address problems of

choice under uncertainty, wherein, both the states of nature and the possible outcomes

are hard to comprehend.5 Instead of forming beliefs over the states of nature, as

suggested by the expected utility paradigm, decision makers draw upon their experience

in similar past cases to help them reach decisions. According to GS a weight is

assigned to each record in the database expressing its relevance to the eventuality

under consideration. One eventuality is ranked above another if its aggregate weight

across the database is higher. For instance, when trying to diagnose a patient, a past

case of a patient with similar symptoms to those of the current case, who suffered from

illness A, is more relevant for the eventuality ‘illness A’ than it is for the eventuality

‘illness B’. Accordingly, in the representation this record will attribute more weight to

‘illness A’ than to ‘illness B’. Typically this weight will be higher the more resemblance

there is between the symptoms of the past case and those of the current patient. Illness

A will be considered more likely than B whenever its total weight across the database

is higher.

Ranking eventualities according to the GS model requires the capability of assigning

an exact weight, expressing degree of relevance, to each pair of eventuality and record

in the database. This is a reasonable assumption when a good understanding exists of

the factors responsible for relevance of past cases to the current situation. However,

5The Inductive Inference model is closely related to Gilboa and Schmeidler’s Case-Based Decision
theory, 1995 and 1997.
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when the situation at hand is not completely understood or perhaps when there is a lot

at stake, the evaluator may be reluctant to commit to specific weights. For instance,

the doctor in the medical example above may not be able to determine whether a

patient suffering from pain and fatigue resembles the current patient more than does

a patient suffering from fatigue and dizziness, if the current patient exhibits all three

symptoms.

The present work generalizes the GS model by allowing for a set of relevance-

weights, thus accommodating an evaluation process of an individual who is unsure

about the relevance of records in the database to eventualities under consideration.

In the model one eventuality is considered more likely than another, if and only

if, this ranking is corroborated by the data according to every relevance-weighting

function. If an eventuality is evaluated as more likely than another according to one

relevance-weighting, but according to another relevance-weighting the opposite is true,

then the evaluator will refrain from issuing a comparison of the likelihoods of the

two eventualities. The model thus converts lack of confidence into a sign of caution.

Multiplicity of weighting functions is a reflection of there being different interpretations

of the data, and incomparability arises when conflicting interpretations of the data

obtain.

Formally, a relevance-weighting function v assigns a weight to each pair of an

eventuality and a record in a database. For two eventualities, x and y, and a database

I, x is considered more likely than y given database I, if and only if, for every relevance-

weighting function v in some set V ,

∑
c∈I

v(x, c) ≥
∑
c∈I

v(y, c) (1)

where c denotes a record in the database, and v(x, c) is the weight which record c

provides to eventuality x, according to the function v. In other words, x is more likely

than y given database I, if and only if, there is unanimity over V that I lends more

weight to eventuality x than to eventuality y. Therefore it may happen that, given

database I, neither x is more likely than y nor y is more likely than x.
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The main result of the paper is an axiomatic characterization of the representation

in (1).

In comparison to the GS model completeness is suppressed. Also, diversity which is

a richness condition is disposed of. Diversity is less suitable to describe incompleteness

as it requires many comparisons to be completed. On the other hand, GS’s Combination

and Archimedean axioms are replaced by a stronger axiom which is termed Independence

of Relevance. In a complementary result, our axioms are supplemented by completeness

in order to obtain a representation as in (1) with a single relevance-weighting function

v.

1.3 Related Literature

There is a vast body of literature within decision theory providing axiomatizations

of relations that, due to ambiguity, are allowed to be incomplete. Ambiguity in these

models is represented by a decision maker having a set of priors over the states of nature,

which is analogous to our evaluator considering a set of relevance-weights of past records

to eventualities. The decision maker prefers one alternative over another, if and only

if, this alternative is preferred according to each prior in the set of priors (see, for

instance, Giron and Rios (1980), Bewley (2002), Gilboa et al. (2010), and Galaabaatar

and Karni (2011)). However, in these works the preferences do not explicitly depend

on data. By contrast, the ability of the evaluator in the present model to rank the

likelihoods of two eventualities is a function of the available data, which is a primitive

of the model.

Ambiguity was introduced into the Inductive Inference (or Case-Based) framework

by Eichberger and Guerdjikova (2010 and 2013), first in the context of belief formation

and then in the context of decision-making. The decision-making model suggests an

α-maxmin rule which is complete. Eichberger and Guerdjikova (2010 and 2013) refer

to two types of ambiguity: the first, due to the small number of observations in the

database, where absence of data gives rise to the largest amount of ambiguity that

gradually disappears as the number of observations grows. This aspect is not part of the

present model, for incomparability is only the result of contradictory interpretations,
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which may or may not obtain, regardless of the size of the database. The second source

of ambiguity mentioned in Eichberger and Guerdjikova (2010 and 2013) is caused by

uncertainty regarding the relevance of past observations to the current problem. This

second type is in line with the reasoning considered here and does not disappear with

the mere accumulation of data.

1.4 Outline of the Paper

The setup and assumptions are described in Section 2. Section 3 contains the main

theorem of the paper, a unanimity representation of incomplete relations, followed by

a representation when relations are assumed to be complete. Section 4 concludes, and

Section 5 contains the proofs.

2 Setup and Assumptions

2.1 Setup and Notation

X a finite, non-empty set of eventualities, with typical elements x, y, . . ..

C a finite, non-empty set of record types, with a typical element c. This

is the set of all possible classes of past observations that can be found

in a database.

J = ZC
+ the set of all databases, which are functions from record types to

nonnegative integers, with typical elements I, J, . . .. For I ∈ J and

c ∈ C, I(c) denotes the number of times record type c appears in

database I.

{%I}I∈J for a database I, %I is a binary relation over X. A ranking x %I y

means that eventuality x is at least as likely as eventuality y, given

database I.

In the medical example above the eventualities may be ‘illness A’ and ‘illness B’, and

a record type consists of various symptoms and the illness of the patient, so for example

the record type (‘no pain’, ‘yes fatigue’, ‘illness A’) represents a case of a patient with
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no pain, who complained about fatigue, and suffered from illness A. A database is a

summary of the number of times the doctor has encountered each record type. Given

a database the doctor tries to evaluate whether illness A is more likely than illness B.

The ranking ‘illness A’ %I ‘illness B’ implies that the doctor maintains that illness A

is at least as likely as illness B given database I. Lack of both ‘illness A’ %I ‘illness B’

and ‘illness B’ %I ‘illness A’ indicates that the doctor is unable to assess which of the

two illnesses is more likely. For two databases I and J , I + J is the database obtained

by pointwise addition, namely, (I + J)(c) = I(c) + J(c) for every c ∈ C.

2.2 Assumptions

First and foremost, the model does not impose completeness of relations {%I}I∈J.

Without completeness, weak relations allow to distinguish between pairs of eventualities

that are equally likely and those whose likelihoods are incomparable. We, therefore,

consider weak relations, for which reflexivity should hold.

A1. Reflexivity: For every eventuality x and database I ∈ J, x %I x.

Next we discuss a few standard assumptions, demonstrate that they are insufficient,

and introduce the set of necessary and sufficient axioms employed in our model.

2.2.1 Combination and Related Axioms

A standard assumption presented first is transitivity, which states that for every

three eventualities x, y, z and any database I, if both x %I y and y %I z then

x %I z. Transitivity is a basic condition expressing that the extent to which a

database corroborates an eventuality is independent of the eventuality to which it

is being compared. It would fail, for instance, if different criteria were used to compare

different eventualities.

To gain intuition for the kind of independence of relevance across eventualities that

is entailed by transitivity, consider an evaluator who wishes to predict who will win

the NYC marathon, given contestants’ previous race times. The evaluator uses the
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following method to rank contestants: two contestants who have already competed in

the NYC marathon are ranked according to their average finishing times in the NYC

marathon, otherwise they are ranked according to their average finishing times in all

marathons. Now suppose that only contestants A and B have participated in a NYC

marathon and that A’s average finishing time is better than B’s in those marathons.

However, when considering all marathon finishing times, B’s average is better than

contestant C’s, and C’s average is better than A’s.

In this case, the evaluator would conclude that A is more likely to win this year’s

NYC marathon than B, and B is more likely to win than C, who is more likely to

win than A, a conclusion that violates transitivity. Transitivity fails in this example,

because in contrast to the notion of independence of relevance across eventualities, the

relevance of past observations to an eventuality depends on the eventuality to which

it is being compared. When comparing A and B, the only relevant observations are

those from prior NYC marathons, while the other observations become relevant only

when comparing either of them to contestant C who has not participated in a NYC

marathon.

Another assumption, central to the GS model, is Combination, which states that if

eventuality x is evaluated as more likely than eventuality y given two separate databases

I and J , then x should also be evaluated as more likely than y when the two databases

are combined. Formally,

Combination: For any two eventualities x and y and databases I and J , if x %I y

and x %J y then x %I+J y. If, in addition, either ¬(y %I x) or ¬(y %J x), then

¬(y %I+J x).

(If completeness is assumed, the negations in the second part convert into strict

rankings).6

Combination requires that the relevance of any one record in a database to an

6A similar axiom appears in Young (1975) in the context of social choice, that employs repetitions
of preference orders over a finite set of alternatives, so that each preference order corresponds to a
record type in our setup.
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eventuality be independent of all the other records in that database. So, analogously to

the above, it entails independence of relevance across records. For a better understanding

of this axiom consider an example, taken from GS, where it fails. Suppose an individual

trying to compare the likelihoods of a coin being fair or biased using a database of past

tosses. The corroboration that a record of tails provides to the likelihood that the

coin is biased is higher when the other records in the database are mainly tails than

it is when the database contains a nearly equal number of records of heads and tails.

The corroboration that a ‘tails’ record lends to the likelihood of ‘biased coin’ therefore

depends upon the composition of other records in the database (see GS for a detailed

discussion of this point and more examples).

Under the assumption of completeness, Combination implies several other properties

that do not follow when completeness is suppressed. As will be made clear, these

properties match the type of ambiguity we seek to address in our model and are, like

Combination, consistent with the idea of relevance being independent across records.

For the special case of I = J , Combination implies that if x %I y then x %2I y

and together with completeness the opposite is also implied, namely if x %2I y, then

x %I y, or, equivalently, if ¬(x %I y) then ¬(x %2I y). Without completeness the

second implication does not necessarily follow. It seems reasonable to impose this

property in our model, as it matches the underlying assumption that inability to make

comparisons is due to conflicting interpretations of the data. In particular, when

¬(x %I y) there must be one interpretation of the records in I whereby y is evaluated

as more likely than x. Independence of relevance across records means that in the

duplicated database, 2I, each copy of I maintains its original relevance, hence the

same interpretations that apply for I apply for 2I as well, yielding ¬(x %2I y).

The next axiom, termed Replication-Invariance of Incomparability, expresses the

above idea (generalized to any number of replications of the data).

A2. Replication-Invariance of Incomparability: For any two eventualities x and

y, database I ∈ J and an integer n ∈ N, if ¬(x %I y) then ¬(x %nI y).
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According to this axiom incompleteness cannot be ascribed to there being an

insufficient number of records per se. The model is therefore inappropriate for describing

the problem of a statistician that infers that one alternative is more likely than another

when that hypothesis is statistically significant. Typically for such inference, for a very

small database neither can the claim x is more likely than y be refuted nor can the

opposite. Yet, one of these assertions will become significant for a large enough number

of replications of the database, thus violating Replication-Invariance of Incomparability.

In the presence of completeness, Combination also entails that if x %I+J y and

y %I x then x %J y. However, when completeness is not imposed, inability to compare

x with y on J is still consistent with Combination. Nevertheless, the requirement

that x %J y once again conforms to independence of relevance across records, as the

corroboration that records in I lend to the likelihood of y compared with that of x

cannot be altered by records in J . Since y is perceived to be more likely than x on I, if

this evaluation is reversed on I + J , then it must be the records in J that caused this

reversal by corroborating x being more likely than y. The following axiom incorporates

this idea.

Strong Combination: For any two eventualities x and y and databases I and J ,

If x %I y and x %J y, then x %I+J y.

If x %I+J y and y %I x, then x %J y.

2.2.2 Insufficiency of the Above Axioms

Reflexivity, transitivity, Replication-Invariance of Incomparability, and Strong Combination

are obviously necessary conditions for the representation (1). However, they are

insufficient, as demonstrated by the following example.

Example 1. Let X = {x, y, z, w} and C = {1, 2}. Suppose that the relations %I are
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all reflexive, and that

x %(1,0) y , x %(1,1) z , x %(0,1) w ,

z %(1,0) w , w %(1,1) y , z %(0,1) y , and

¬(x %(2,2) y) .

It is easy to see that transitivity, Replication-Invariance of Incomparability, and Strong

Combination are all satisfied,7 yet these rankings cannot be represented by (1). Assuming

there existed such a representation, the rankings above would imply that for all v ∈ V ,

v(x, 1) ≥ v(y, 1) ,

v(z, 1) ≥ v(w, 1) ,

v(x, 1) + v(x, 2) ≥ v(z, 1) + v(z, 2) ,

v(w, 1) + v(w, 2) ≥ v(y, 1) + v(y, 2) ,

v(x, 2) ≥ v(w, 2) , and

v(z, 2) ≥ v(y, 2) .

By summing over these inequalities 2v(x, 1)+2v(x, 2) ≥ 2v(y, 1)+2v(y, 2) for all v ∈ V .

Hence by the representation x %(2,2) y, contradicting ¬(x %(2,2) y).

Example 1 not only demonstrates that the axioms discussed above are too weak to

derive the representation in (1), but also raises the question of whether it is reasonable

to require that a stronger condition hold. In particular we need to examine whether,

given the impetus of the model, the rankings stated in the example should in fact imply

that x %(2,2) y. We argue the affirmative. On database (1, 1) it is possible to complete

the ranking between z and w in two ways, either by z %(1,1) w or by w %(1,1) z. In case

z %(1,1) w, transitivity implies x %(1,1) y, and by Combination it follows that x %(2,2) y.

Otherwise, if w %(1,1) z, then by Strong Combination w %(0,1) z leading to x %(0,1) y by

transitivity. Then by applying Combination twice, both x %(1,1) y and x %(2,2) y. The

7For this purpose assume that rankings on replications of the databases mentioned above are
properly completed according to Combination. Moreover, rankings can be added in order to satisfy
practically any form of continuity (such as GS Continuity, defined in Section 3.1).
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ranking of eventualities z and w on (1, 1) may not be known, yet if all possible rankings

lead to the same conclusion that x %(2,2) y then this ranking should be completed in

that manner.

2.2.3 Exact Independence of Relevance

The previous discussion suggests that the strengthening of the axioms introduced

above is in order. We, therefore, introduce a new condition, which states that the

relevance of a record to an eventuality is independent of the other records and the

other eventualities, in a stronger sense than as entailed by the conditions discussed so

far. The impetus for independence across records is the same as that mentioned above

in the discussion of Combination, where the relevance of a record to an eventuality is

not altered by other records in the database. Independence across eventualities means

that the relevance of a record to an eventuality remains the same, regardless of the

eventuality to which the comparison is made, a notion expressed by transitivity (see

the example of the NYC marathon above).

Notice that in Example 1, x is never less likely than another eventuality and y

is never more likely than another eventuality, and the rankings satisfy the following

conditions: the aggregation of all records on which x is more likely than another

eventuality (database K = (2, 2), which is the aggregation of (1, 0), (1, 1), and (0, 1))

equals the aggregation of all records on which y is less likely than another eventuality.

Moreover, for any eventuality other than x and y, the aggregation of all records on

which it is more likely is the same as the aggregation of records on which it is less

likely. The next axiom allows us to deduce, then, that x %(2,2) y.

For a general formulation, let R = {m1 %J1 `1, . . . ,mn %Jn `n} denote some set of

rankings (which need not include every ranking that holds, or even every eventuality

in the model), and define, for eventuality z, MR(z) =
∑

t:mt=z

Jt, and, LR(z) =
∑
t:`t=z

Jt.

That is, MR(z) aggregates all records in R for which z is considered more likely

(compared to some eventuality), and likewise LR(z) aggregates all those records in R

for which it is considered less likely. BothMR(z) and LR(z) are themselves databases.

The next axiom applies this notation, stating general circumstances under which a
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set of rankings should lead to comparability of eventualities given a database. The

notation 0 stands for the all-zeros database.

Exact Independence of Relevance: Let x, y be eventualities, K a database, and

R a set of rankings. If

MR(x)− LR(x) = K , (2)

LR(y)−MR(y) = K , and (3)

MR(z)− LR(z) = 0 , for every z 6= x, y , (4)

then x %K y.

Note that in the special case where all the relations in R apply to the same two

eventualities, Exact Independence of Relevance is reduced to Strong Combination,

which is an expression of independence across records. On the other hand, if the

relations that appear in R all refer to the same database, then Exact Independence

of Relevance reduces to transitivity, which is an expression of independence across

eventualities. In general, Exact Independence of Relevance allows both the databases

and the eventualities to vary, indicating that both types of independence hold concurrently.

The following discussion explains the concepts behind this axiom and elucidates how

they comply with the two notions of independence, both across records and across

eventualities.

By equation (2), the aggregated database on which x is considered more likely than

other eventualities in R, is the sum of K and the database on which x is considered

less likely than other eventualities in R. Following the logic that underlies Strong

Combination, the records in K must be responsible for the evaluation of x as more

likely. It thus follows that K contains evidence to corroborate the evaluation of x as

more likely relative to the other eventualities in R, while equation (3) analogously

provides evidence in K to corroborate the evaluation of y as less likely relative to the

other eventualities in R.
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Nevertheless, it is undesirable to conclude that x is more likely than y on K based

on equations (2) and (3) alone. This is clearly demonstrated in the following example in

which x %K z and w %K y are known. It is purely speculative to infer that necessarily

x %K y, which would follow if only conditions (2) and (3) were to be imposed, since

it is perfectly possible that w %K y %K x %K z. Concluding that x %K y becomes

reasonable if certain additional relations are known, such as Conditions (4). The most

straightforward way in which Conditions (4) could be satisfied, in this example, is if

it were known that z %K w; as transitivity would imply that x %K y. In this case, z

and w are utilized as references for the purposes of comparing x and y. Eventuality

x is more likely than eventuality z, which itself is more likely than eventuality w. At

the same time eventuality y is less likely than eventuality w on K. All of which taken

together would lead the evaluator to conclude that x is at least as likely as y on K.

However, Conditions (4) can also be satisfied under alternative, more complex, sets

of relations. For example, they would be satisfied if, instead of z %K w, it were known

that z %K+J y, x %K+J w, y %J x, and w %J z. When these relations are taken into

account, Conditions (2) and (3) are satisfied for 2K, which is preference-wise identical

to K, and Conditions (4) are satisfied having that, LR(z) = MR(z) = LR(w) =

MR(w) = K + J . Independence across records and across eventualities lead to the

conclusion that x %K y: if y %K+J x then by transitivity z %K+J w, and by Strong

Combination z %K w, which again by transitivity implies that x %K y. If instead

x %K+J y then Strong Combination immediately implies that x %K y. In this example

once again, z and w serve as references, only this time, not in relation to a single

database but to an array of databases and eventualities. Conditions (4) guarantee that

the aforementioned eventualities can serve as a reference for the relation between x and

y on K . These other eventualities, overall neutralize themselves, since they gain no

support for or against them when compared to x and y, as x gains support for being

more likely and y less likely than these eventualities on K.

The axiom makes use of the two notions of independence, across records and across

eventualities, in the interpretation of MR(·) and LR(·). Evidence that an eventuality

is more likely, as well as evidence that it is less likely, is aggregated across databases, in
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order to obtain both the ‘more likely’ and the ‘less likely’ databases for the eventuality,

MR(·) and LR(·). The resulting databases are independent of the order and manner in

which they were aggregated, thus expressing independence of relevance across records.

In addition, MR(·) and LR(·) are formed on the basis of comparisons of a particular

eventuality to various other eventualities, reflecting the idea that the corroboration a

record lends to the evaluation of an eventuality is independent of the eventualities to

which it is being compared.8

2.2.4 Independence of Relevance

Exact Independence of Relevance is generalized to express the requirement that independence

of relevance across records and eventualities be a continuous property. Namely, if

there are rankings that suitably approximate the conditions that appear in Exact

Independence of Relevance, then again it must be that x %K y.

A3. Independence of Relevance: Let x, y be eventualities, and K a database.

Suppose there exists a sequence of pairs (Ri, ni) where each Ri is a set of rankings and

ni ∈ N, such that (convergence is point-wise, case-by-case)

(MRi
(x)− LRi

(x)) /ni → K

(LRi
(y)−MRi

(y)) /ni → K

(MRi
(z)− LRi

(z)) /ni → 0 , for every z 6= x, y .

Then x %K y.

These conditions are meant to capture closeness ofMRi
(x)−LRi

(x) and LRi
(y)−

MRi
(y) to niK,9 and of MRi

(z) − LRi
(z) to the all-zeros database. The conclusion

8Exact Independence of Relevance is closely connected to the finite cancellation condition that
was first introduced by Kraft, Pratt and Seidenberg (1959) to derive a representation of a subjective
probability. The primitives over which the finite cancellation condition is defined are events rather
than databases as in our paper. Nevertheless, the two conditions impose analogous strong additivity
requirements, which serve to derive an additive representation.

9Any relation that holds for K holds for any replication of K and vice versa, due to Homogeneity,
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is then the same as in the exact version of Independence of Relevance.

2.2.5 Axioms for the Characterization

The axioms that are finally imposed in the model are Reflexivity (A1), Replication-

Invariance of Incomparability (A2), and Independence of Relevance (A3). The next

remark summarizes attributes that follow from these axioms, starting from transitivity

and Strong Combination, that were already discussed. The next attribute is Homogeneity,

which states that likelihoods of eventualities are comparable given a database if and

only if they are comparable given its replications. Homogeneity shows that incomparability

in our model is unrelated to the amount of available data, in that incomparability will

not be resolved by simply having more data, nor by having less. This property is

compatible with conflicting interpretations being a source of incomparability, as any

conflicting interpretations that obtain for a database obtain for its replications, and

vice versa. The last attribute in the remark, termed Impartiality, asserts that on the

empty database (the all-zeros database) all eventualities are comparable and deemed

equally likely.10 Impartiality is yet another demonstration that incomparability is not a

function of the amount of data but rather of conflicts in their analysis – no available data

whatsoever generates no conflicting interpretations of data, leading to comparability

(in the form of indifference) of all eventualities.

Remark 1. For every three eventualities x, y, z and databases I and J , Reflexivity,

Replication-Invariance of Incomparability and Independence of Relevance imply:

(a) Transitivity: If x %I y and y %I z, then x %I z.

(b) Strong Combination:

If x %I y and x %J y, then x %I+J y.

If x %I+J y and y %J x, then x %I y.

a property that follows from A2 and A3 and will be discussed shortly. These conditions therefore
reflect that the differences preference-wise converge to K. Thus, for example, we view the sequence
of databases (10n+ 1, 3n+ 2) as approaching, preference-wise, the database (10, 3).

10In particular, Impartiality excludes some a-priori structures of the eventualities considered. For
instance, eventualities cannot be nested.
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(c) Homogeneity: For any n ∈ N, x %I y if and only if x %nI y.

(d) Impartiality: x %0 y, where 0 denotes the all-zeros database.

3 Results

3.1 Main Result

The conclusion of this inquiry is that assumptions A1-A3 are equivalent to the representation

in (1). As the domain of the relevance-weighting functions is X× C, they are referred

to as matrices throughout the remainder of the paper.

Theorem 1. The following statements are equivalent:

(i) The relations {%I}I∈J satisfy assumptions A1-A3.

(ii) There exists a nonempty set V of matrices v : X × C −→ R, such that for any

two eventualities x, y and database I,

x %I y ⇐⇒
∑
c∈C

v(x, c)I(c) ≥
∑
c∈C

v(y, c)I(c), for every v ∈ V . (5)

With this representation each matrix v ∈ V can be viewed as a conceivable interpretation

of the data. The likelihood of eventuality x being greater than that of y is accepted only

when every possible interpretation of the data leads to that conclusion. If, however, x is

evaluated as more likely than y according to one interpretation, and less likely according

to another interpretation, then no ranking of the likelihoods of the two eventualities is

possible.

Example 2. In order to illustrate the evaluation process described by our theorem

let us return to the medical example presented in the introduction. Assume that the

doctor has the following set of data on past patients:
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Fatigue Fever Cough Outcome Num. of Records

No Yes Yes Illness A 150

Yes No Yes Illness A 4

No Yes No Illness A 60

Yes No No Illness A 5

No Yes Yes Illness B 40

No Yes No Illness B 30

Yes No No Illness B 40

Now suppose that a patient suffering from a cough and fatigue, but without fever,

asks the doctor for a diagnosis. Considering illnesses A and B, the doctor may be

inclined to diagnose the current patient with illness A as the proportion of A patients

in the entire population is approximately 2/3. However, the fraction of A patients

varies dramatically within different subgroups of the population, therefore the degree

of relevance of these past cases to this specific patient is crucial.

In the above database there are only four cases identical to the current case. These

cases are the most relevant to the case at hand, so the doctor would surely take them

into account when comparing the likelihoods of illnesses A and B. For example, this

corresponds to assigning, for x ∈ {illness A, illness B} and every considered relevance-

weighting function v, v(x, c) = 1 when c = (fatigue yes, fever no, cough yes, x). However,

the doctor may want to take into account less relevant cases. If the doctor were to

consider in addition only past cases of patients who had a cough, he or she would

conclude that illness A is more likely, as it is much more frequent than B in that group.

For instance, this corresponds to assigning v(x, c) = 0.5, when c = (fatigue no, ·, cough yes, x)

or c = (fatigue yes, fever yes, cough yes, x), v(x, c) = 1 when c = (fatigue yes, fever no, cough yes, x),

and v(x, c) = 0 otherwise. If, instead, the doctor were to consider, in addition to

identical cases, only past cases of patients who suffered from fatigue, the doctor would

come to the opposite conclusion, as illness B within this group is much more frequent

than A. This corresponds to assigning v(x, c) = 0.5 when c = (fatigue yes, ·, cough no, x)

or c = (fatigue yes, fever yes, cough yes, x), v(x, c) = 1 when c = (, fatigue yes, fever no, cough yes, x),
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and v(x, c) = 0 otherwise.

It is precisely this contradiction in the conclusions that makes the doctor unsure

which illness is more likely in the current case. Importantly, such uncertainty does

not exist when considering a patient suffering from a cough and a fever (but no

fatigue), since there are many past cases of patients that suffered from those exact

symptoms that indicate that illness A is more likely than B. Likewise, gathering enough

observations of patients with a cough and fatigue will settle the comparison for the case

under consideration.

In principle, the accumulation of observations that are clearly relevant to the

question at hand will typically resolve the comparison between eventualities. When

observations whose characteristics are identical (or almost identical) to those of the

current case are accumulated then, assuming that all the employed relevance-weighting

functions put very high weight on such observations relative to more distant ones, a

comparison would become valid.

Another aspect that is fundamental to case-based reasoning is that weights v are

held constant across databases, precluding processes that entail learning of relevance

weights. The assumption made is that a specific set of relevance-weights is applied in

all comparisons of eventualities, rather than this set itself being updated constantly as

observations accumulate. The set of weights may be the result of a learning process,

but this process is exogenous to our model. The evaluator therefore entertains a fixed

set of interpretations that are not altered during the evaluation process. For further

discussion of this point see GS on second-order induction.

In comparison with the GS model, instead of our assumption of Independence of

Relevance (which in itself includes a form of continuity) they impose Combination

and Continuity, add Completeness, and supplement the conditions with a richness

assumption termed Diversity. For the sake of convenience we restate the Continuity and

Diversity axioms that appear in GS, and their result below. Continuity is formulated

with negation of rankings, which translates, for complete relations, to strict preferences.

GS Continuity: For any databases I, J and eventualities x, y, if ¬(x %I y) then there

exists n ∈ N such that ¬(x %nI+J y).
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GS Diversity: For every list of four distinct eventualities (x, y, z, w) there exists a

database I such that x �I y �I z �I w. If |X| < 4, then for any strict ordering of the

elements of X there exists a database I such that �I is that ordering.

Theorem 2 (GS, 2003). The following statements are equivalent:

(i) The relations {%I}I∈J satisfy Completeness and Transitivity, Combination, Continuity

and Diversity.

(ii) There exists a matrix v : X × C −→ R, such that for any two eventualities x, y

and database I,

x %I y ⇐⇒
∑
c∈C

v(x, c)I(c) ≥
∑
c∈C

v(y, c)I(c).

Furthermore, v is diversified,11 and is unique in the sense that v and u both

represent {%I}I∈J as above iff there is a scalar λ > 0 and a matrix β : X×C −→ R

with identical rows (i.e., with constant columns) such that u = λv + β.

Diversity is a strong assumption in our context, since it requires the evaluator to be

able to determine many comparisons, and thus confines the type of incomplete relations

that can be described. In our work we therefore employ a strong form of additivity,

generalizing Combination, instead of imposing Diversity.

3.1.1 Uniqueness of the Representing Set V

The set of matrices V in our theorem need not be unique. First, if V represents the

relations {%I}I∈J, then so does the closed convex cone generated by V , and second,

it is possible to shift the matrices in V by adding any matrix with identical rows and

still obtain a representation of the same relations. These issues can be resolved by

normalizing some row of each matrix in V , for example, by fixing the last row in each

11If |X| ≥ 4, v is diversified if there are no distinct four eventualities x, y, z, w and real numbers
λ, µ, θ, λ+ µ+ θ = 1, such that v(x, ·) ≤ λv(y, ·) + µv(z, ·) + θv(w, ·). If |X| < 4, v is diversified if no
row in v is dominated by an affine combination of the others.
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matrix to equal an all-zeros row. Yet, even if all matrices in V are normalized, and

only closed convex cones are considered, uniqueness is not guaranteed. The following

example demonstrates this point.

Example 3. Let X = {x, y, z}, C = {1, 2, 3}, and define V to be the closed convex

cone generated by the following three matrices:

v1 =


3 0 −1

0 1 −1

0 0 0

 , v2 =


1 0 −1

0 3 −1

0 0 0

 , v3 =


1 0 −3

0 1 −3

0 0 0

 .

The relations obtained are x %I y ⇔ I(1) ≥ 3I(2) , x %I z ⇔ I(1) ≥ 3I(3) ,

and y %I z ⇔ I(2) ≥ 3I(3) , for any database I. Now consider the matrix

v4 =


5/12 0 −1

0 1 −1

0 0 0

 .

If the matrices above are supplemented with v4 the relations do not change in any

way, in spite of v4 not being contained in V . In other words, if W is the closed convex

cone generated by v1, . . . , v4, then W and V are two distinct sets, each representing the

same relations {%I}I∈J. Notice that the relations in this example satisfy the Diversity

condition of GS. For complete relations Diversity guarantees uniqueness of relevance

weights. However, the example demonstrates that this no longer holds for incomplete

relations.

Without uniqueness, a ‘standard’ representing set of matrices is the maximal representing

set w.r.t. set inclusion. This is the union of all representing sets, which is a closed

convex cone and unique by definition. The maximal set has the advantage of containing

all possible values of relevance-weights. If, after employing a consensus rule over

various interpretations of data as a first stage of comparison, a further examination of
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completion of relations is undertaken by employing a different rule (e.g. a minimum-

weight rule), then no relevance-weights are eliminated a priori. The second rule then

relies on the full range of interpretations that are compatible with the initial incomplete

relations.

3.1.2 Continuity Axiom

One may wonder whether our representation can be derived using a more standard

form of continuity, such as the GS continuity stated above. That is, suppose that the

continuous version of Independence of Relevance, namely A3, is replaced by Exact

Independence of Relevance, together with GS Continuity. The following example

shows, however, that this modified set of axioms is weaker than A1-A3, as it is

insufficient to derive the representation (1).

Example 4. Let X = {x, y, z}, C = {1, 2}. Suppose that Impartiality holds, and that

for every I, %I is reflexive. In addition, assume the following relations (and only those)

are satisfied:

(i) For any database I such that I(1) ≥ I(2), x %I y.

(ii) For any database J such that J(1) ≤ J(2) and
√

2 · J(1) > J(2), x %J z.

(iii) For any database Q such that
√

2 ·Q(1) < Q(2), z %Q y.

It is next shown that for these relations a representation as in our theorem does

not exist. To see this, suppose on the contrary that there is a representing set V of

matrices in the sense of (ii) of Theorem 1. For relations (ii) and (iii) to hold, every

v ∈ V should satisfy:

∀(k,m) ∈ J s.t. k ≤ m <
√

2k , k[v(x, 1)− v(z, 1)] +m[v(x, 2)− v(z, 2)] ≥ 0 ,

∀(k,m) ∈ J s.t. m >
√

2k , k[v(z, 1)− v(y, 1)] +m[v(z, 2)− v(y, 2)] ≥ 0 .

These inequalities hold true when k is substituted by any α > 0, and m by
√

2α, which

together imply that α[v(x, 1) − v(y, 1)] +
√

2α[v(x, 2) − v(y, 2)] ≥ 0. Moreover, for
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every β ≥ γ > 0, β[v(x, 1)− v(y, 1)] + γ[v(x, 2)− v(y, 2)] ≥ 0, since by (i), k[v(x, 1)−

v(y, 1)]+m[v(x, 2)−v(y, 2)] ≥ 0 for every k ≥ m. Hence for α, β, γ > 0 for which β ≥ γ,

(α+β)[v(x, 1)−v(y, 1)]+(
√

2α+γ)[v(x, 2)−v(y, 2)] ≥ 0. Given any k and m, by letting

α = m−k√
2−1 and β = γ =

√
2k−m√
2−1 we obtain k[v(x, 1)− v(y, 1)] +m[v(x, 2)− v(y, 2)] ≥ 0.

Consider a database K = (k,m) with k < m <
√

2k. As the inequalities are

satisfied for every v ∈ V , it is implied that x %K y, in contrast to the supposition that

x and y are incomparable on K. We thus conclude that the relations defined above do

not admit a representation as in our theorem.

On the other hand, the relations as defined do satisfy assumptions A1, A2, Exact

Independence of Relevance, and GS Continuity. This is proved in appendix A. Exact

Independence of Relevance together with GS Continuity are therefore weaker than A3,

as Under A1-A3 a representation as in Theorem 1 obtains (in appendix A it is also

shown directly that A3 is violated in the example). Intuitively, what drives the proof

is that there are no databases on the real line
{

(x1, x2) :
√

2 · x1 = x2
}

, since x1 and

x2 cannot both be integers.12 Exact Independence of Relevance therefore has no bite

there.

3.2 Complete Relations

If completeness is assumed for relations {%I}I∈J, then a conclusion similar to GS can

be obtained.

A4. Completeness: For any two eventualities x, y and database I, either x %I y or

y %I x.

Proposition 3. The following statements are equivalent:

(i) The relations {%I}I∈J satisfy assumptions A3 and A4.

12Technically speaking, if the domain of databases were real-valued, i.e., the databases were RC
+,

then A1, A2, Exact Independence of Relevance, and GS Continuity would actually be sufficient to
derive the representation (1) (though the proof is not trivial).
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(ii) There exists a matrix v : X × C −→ R, such that for any two eventualities x, y

and database I,

x %I y ⇐⇒
∑
c∈C

v(x, c)I(c) ≥
∑
c∈C

v(y, c)I(c) . (6)

There are two notable differences between the representation obtained here and

that of the GS model, stated above as Theorem 2. First, the assumptions used here

imply a broader range of relations, as the relations are not required to be diverse,

and correspondingly the representing matrix is not necessarily diversified. On the

other hand, while in the GS model the representing matrix is essentially unique (up

to multiplication by a positive constant and shift by a matrix with identical rows),

Proposition 3 does not provide such uniqueness. The following is an example of a

family of complete relations which satisfy (i) of Proposition 3, yet admit two different

representations by two distinct matrices.

Example 5. Let X = {x, y, z}, C = {1, 2, 3}, and

v =


1 0 3

0 1 2

0.5 0.5 2.5

 .

The rankings defined by v through the representation (6) are: if I(1)+ I(3) ≥ I(2),

then x %I z %I y, otherwise y %I z %I x. This representation, however, is not unique.

The same rankings are induced, for instance, by the matrix:

w =


1 0 3

0 1 2

0.25 0.75 2.25

 .

The difference between the representation of Proposition 3 and that of GS stems

from the fact that the axioms of Combination and Diversity used in the GS model are

replaced by Independence of Relevance. As discussed in Subsection 2.2, Independence
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of Relevance generalizes and strengthens Combination and Transitivity. In doing so,

it makes Diversity unnecessary. However, Independence of Relevance, as mentioned

before, does not yield a unique representing matrix. Note that in the example above

Diversity is not satisfied, as eventuality z is always ranked between x and y. This

example therefore cannot be accommodated in the GS model.

4 Conclusion

In the present work we describe an evaluation process that compares likelihoods of

eventualities based on past data. A central feature of the model is that different

plausible interpretations of the data may arise when the evaluator is uncertain as to

how relevant the data are to the question at hand. The evaluator is able to compare

the likelihoods of eventualities just as long as all interpretations of the data lead to the

same conclusion, while refraining from making a comparison when opposite conclusions

obtain.

These difficulties may be resolved by gathering more data for which there is less

doubt regarding their applicability, such as records of patients whose characteristics

more closely resemble those of the current case (e.g. more patients that suffer from

cough and fatigue in the medical example in subsection 3.1). Unfortunately, such data

may not always be available, leaving comparisons undetermined.

The medical examples in the introduction demonstrate that incompleteness in

likelihood evaluations should not be deemed ‘irrational’ when the relevance of available

data is doubtful. Furthermore, when an evaluator and a decision maker are two separate

entities, the possibility to report non-determinability of likelihood comparisons allows

the decision maker to incorporate additional considerations.

5 Proofs

5.1 Proof of Remark 1

For transitivity, apply A3 to the rankings x %I y, y %I z, which indicate that database

I corroborates a (weak) ranking of x above z. For Combination, apply A3 to the

27



rankings x %I y, x %J y, which indicate that database I + J corroborates a ranking

of x above y. In order to see that one direction of Homogeneity holds, apply A3 to n

copies of the ranking x %I y, which indicate that database nI corroborates a ranking

of x above y. In the other direction apply axiom A2. Last, Impartiality is seen to be

satisfied by applying A3 to the rankings x %I x, y %I y, which hold true by Reflexivity

(for any database I). These rankings indicate that the all-zeros database corroborates

a ranking of x above y, as well as y over x.

5.2 Proof of Theorem 1

5.2.1 Proof of the Direction (i)⇒(ii)

The proof of this direction, as well as the proof of Proposition 3, use definitions and

arguments from Ashkenazi and Lehrer (2001). Similar techniques can also be found in

Dubra and Ok (2002).

We extend the relations {%I}I∈J to rational-valued databases, namely to relations

{%I}I∈QC
+

, in the following manner: For a rational-valued database I ∈ QC
+ let k ∈ N be

such that kI ∈ ZC
+, and define %I=%kI . By Homogeneity (see Remark 1) the extension

is well defined, and satisfies %I=%qI for every I ∈ QC
+ and q ∈ Q, q > 0. Assumptions

A1-A2 as well as Exact Independence of Relevance immediately carry through to the

extended relations and will thus be employed without further mention. Axiom A3,

when used in course of the proof, will explicitly be applied to integer-valued databases.

Consider the Euclidean space RX×C as consisting of vectors with blocks, where each

block corresponds to an eventuality, and within each block coordinates correspond to

record types. For ϕ ∈ RX×C , ϕx denotes the block matching eventuality x, which is

a vector in RC. For v ∈ RX×C, eventuality x and record type c, v(x, c) denotes the

entry of v which belongs to block x, and inside block x, to record type c. For any two

eventualities x, y ∈ X and a rational-valued database I, the vector ϕ(I, x, y) denotes

the vector in RX×C for which the block corresponding to eventuality x is I, the block

corresponding to eventuality y is −I, and those corresponding to other eventualities are

all zero. Consider B = conv{ϕ(I, x, y) | x, y ∈ X, I ∈ QC
+} ⊂ RX×C, with its natural
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relative topology generated by the Euclidean topology over RX×C (namely with the

topology of sets B ∩ B, for open sets B in the Euclidean topology of RX×C). All steps

in the proof from now on are conducted in this relative topology.

Define E = cl(conv{ϕ(I, x, y) | x %I y, x, y ∈ X, I ∈ QC
+}). That is, E is the

closed convex hull generated by all vectors in B that indicate ranking. As Homogeneity

and Impartiality are satisfied, E is a closed (in the relative topology) convex cone with

vertex zero. By its definition, E contains all vectors that indicate ranking. That is, if

x %I y then ϕ(I, x, y) ∈ E. The following claim shows that the opposite is also true,

namely that if a vector of the form ϕ(I, x, y) is contained in E, then x %I y.

Claim 4. If ϕ(I, x, y) ∈ E then x %I y.

Proof. If ϕ(I, x, y) ∈ E then so is ϕ(iI, x, y) for iI that is an integer-valued database.

For any such ϕ(iI, x, y) there exists a sequence of points converging to ϕ(iI, x, y),

ϕn =
∑Tn

t=1 λ
n
t ϕ(Int ,m

n
t , `

n
t ), where λnt > 0 and mn

t %Int
`nt .

By denseness of the rational numbers in the reals there must also be a sequence

qn =
∑Tn

t=1 r
n
t ϕ(Int ,m

n
t , `

n
t ) =

∑Tn

t=1 ϕ(rnt I
n
t ,m

n
t , `

n
t ), with rnt > 0 rational numbers, that

also converges to ϕ(iI, x, y).

By the structure of ϕ(iI, x, y), if qn converges to ϕ(iI, x, y), then

∑
t:mn

t =x

rnt I
n
t −

∑
t:`nt =x

rnt I
n
t → iI

∑
t:`nt =y

rnt I
n
t −

∑
t:mn

t =y

rnt I
n
t → iI

∑
t:mn

t =z

rnt I
n
t −

∑
t:`nt =z

rnt I
n
t → 0 , for every z 6= x, y .

For any n, let dn be an integer such that Jn
t := dnrnt I

n
t is an integer-valued database
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for all t. Then still mn
t %Jn

t
`nt , and

 ∑
t:mn

t =x

Jn
t −

∑
t:`nt =x

Jn
t

 /dn → iI

∑
t:`nt =y

Jn
t −

∑
t:mn

t =y

Jn
t

 /dn → iI

 ∑
t:mn

t =z

Jn
t −

∑
t:`nt =z

Jn
t

 /dn → 0, for every z 6= x, y .

Axiom A3 implies that x %iI y, and thus also x %I y. �

We thus conclude that E contains exactly those vectors ϕ(I, x, y) for which x %I y.

Define V = {v ∈ RX×C | v · ϕ ≥ 0 for all ϕ ∈ E} (where v · ϕ denotes the inner

product of v and ϕ). The set V is not empty, since it contains zero. If v1 and v2 are in

V then so is αv1 + βv2 for α, β ≥ 0, and if vn →n→∞ v for vn ∈ V , then v ∈ V . Hence

V is a closed convex cone, with vertex zero.

By the definition of V and Claim 4, if x %I y then
∑

c∈C v(x, c)I(c) ≥
∑

c∈C v(y, c)I(c)

for every v ∈ V . In the other direction, suppose that ¬(x %I y), that is, ϕ(I, x, y) /∈ E.

Since E is closed and convex, then by a separation theorem there exists a vector

v ∈ RX×C separating E and ϕ(I, x, y). By Impartiality the zero vector belongs to E,

and by Homogeneity if ϕ(I, x, y) /∈ E then ϕ(qI, x, y) = qϕ(I, x, y) /∈ E for any q ∈ Q.

Hence the separating scalar is zero, that is, v ·ψ ≥ 0 > v ·ϕ(I, x, y), for every ψ ∈ E. In

other words, there exists v ∈ V such that
∑

c∈C v(x, c)I(c) <
∑

c∈C v(y, c)I(c). Thus it

is established that there exists a set V ⊆ RX×C, such that for every pair of eventualities

x, y and database I,

x %I y if and only if
∑
c∈C

v(x, c)I(c) ≥
∑
c∈C

v(y, c)I(c) for all v ∈ V .
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5.2.2 Proof of the Direction (ii)⇒(i)

Suppose that the relations {%I}I∈J can be represented by (ii) of Theorem 1. It is

immediate to see that Reflexivity (A1) is satisfied. Assumption A2 is proved by

multiplying both sides of the inequality by the same constant.

For Independence of Relevance (A3), let x, y be eventualities and K a database,

such that there is a sequence of pairs (Ri, ni), where each Ri is a set of rankings

Ri = {mi
1 %Ji

1
`i1, . . . ,m

i
r %Ji

r
`ir} and

 ∑
t:mi

t=x

J i
t −

∑
t:`it=x

J i
t

 /ni → K ,

∑
t:`it=y

J i
t −

∑
t:mi

t=y

J i
t

 /ni → K ,

 ∑
t:mi

t=z

J i
t −

∑
t:`it=z

J i
t

 /ni → 0 , for every z 6= x, y .

Let us fix, for the moment, an index i and suppress the i superscript, for convenience.

By summing over all the inequalities implied by the relations,

r∑
t=1

[∑
c∈C

v(mt, c)Jt(c)−
∑
c∈C

v(`t, c)Jt(c)

]
=: αv ≥ 0 , for every v ∈ V .

After rearranging the addends in the above expression according to the eventualities
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involved, it is obtained that:

0 ≤ αv =
∑

t:mt=x

∑
c∈C

v(x, c)Jt(c)−
∑
t:`t=x

∑
c∈C

v(x, c)Jt(c) +∑
t:mt=y

∑
c∈C

v(y, c)Jt(c)−
∑
t:`t=y

∑
c∈C

v(y, c)Jt(c) +

∑
z 6=x,y

[ ∑
t:mt=z

∑
c∈C

v(z, c)Jt(c)−
∑
t:`t=z

∑
c∈C

v(z, c)Jt(c)

]

=
∑
c∈C

v(x, c)

( ∑
t:mt=x

Jt(c)−
∑
t:`t=x

Jt(c)

)
+

∑
c∈C

v(y, c)

( ∑
t:mt=y

Jt(c)−
∑
t:`t=y

Jt(c)

)
+

∑
z 6=x,y

[∑
c∈C

v(z, c)

( ∑
t:mt=z

Jt(c)−
∑
t:`t=z

Jt(c)

)]

Now, if we divide the above expression by ni then the result converges, as i→∞,

to ∑
c∈C

v(x, c)K(c) +
∑
c∈C

v(y, c) (−K(c)) +
∑
z 6=x,y

[∑
c∈C

v(z, c) · 0

]

=
∑
c∈C

[v(x, c)− v(y, c)]K(c) .

As αi
v ≥ 0 for every i, then also αi

v/n
i ≥ 0. Therefore, the limit is nonnegative as well,

namely,
∑

c∈C [v(x, c)− v(y, c)]K(c) ≥ 0 for every v ∈ V , implying x %K y.

5.3 Proof of Proposition 3

First, note that Reflexivity (A1) follows from Completeness (A4). Replication-Invariance

of Incomparability (A2) is implied by A4 and A3 as follows. Suppose ¬(x %I y). By

Completeness y %I x, hence A3 implies y %(n−1)I x. Now if x %nI y then, by A3, we

get x %I y, contrary to our assumption. Therefore, ¬(x %nI y).

Thus, axioms A1-A3 hold and, by Theorem 1, there exists a set V of matrices

v : X× C −→ R that represents the relation % as in (5). We can write (5) succinctly

as x %I y ⇐⇒ v · ϕ(I, x, y) ≥ 0, for every v ∈ V (ϕ(I, x, y) was defined in the proof of
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Theorem 1).

Let Z = { (I, x, y) | ¬(x %I y), x, y ∈ X, I ∈ J} be the set of all possible relations

that do not hold. Since X is finite and J is countable, there are countably many

possible relations, hence Z is countable too. Choose some order on the elements of

Z, and if (I, x, y) is the i-th element of Z then let wi be some matrix in V for which

wi · ϕ(I, x, y) < 0 . W.l.o.g. |wi(x, c)| ≤ 1 for every x ∈ X, c ∈ C, otherwise multiply

wi by a small scalar.

Let vn =
∑n

i=1wi/2
i. Since each wi is bounded, the sequence vn converges to some

matrix v : X×C −→ R (namely, for every x ∈ X, c ∈ C, vn(x, c) converges to v(x, c)).13

To see that the representation (6) holds with this single v, first take I, x, y for which

x %I y. Since for each wi ∈ V , wi · ϕ(I, x, y) ≥ 0, then vn · ϕ(I, x, y) ≥ 0 for every n,

hence also v · ϕ(I, x, y) ≥ 0.

Next, take I, x, y for which ¬(x %I y). Then (I, x, y) is the k-th element of Z, for

some k. Denote δ = wk · ϕ(I, x, y) < 0. On the other hand, ¬(x %I y) implies y %I x,

by Completeness. Therefore, wi · ϕ(I, y, x) ≥ 0 for every i, and since ϕ(I, x, y) =

−ϕ(I, y, x), we get that wi · ϕ(I, x, y) ≤ 0. Thus, for any n ≥ k, vn · ϕ(I, x, y) ≤ δ/2k.

Therefore, also v · ϕ(I, x, y) ≤ δ/2k < 0.

As for the direction (ii)⇒(i), A3 follows from Theorem 1, since the representation

(6) is a special case of (5). Completeness follows from there being a single representing

matrix.

A Appendix: proof of Example 4

We show here that A1, A2, Exact Independence of Relevance, and GS Continuity

obtain in Example 4, while A3 does not.

Reflexivity (A1) is explicitly stipulated. Homogeneity is directly implied by the

conditions assumed, hence, in particular, Replication-Invariance of Incomparability

(A2) obtains.

To see that Exact Independence of Relevance holds, let a, b, c denote the three

13If Z is empty, then v = 0.
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distinct eventualities, K a database, and R a set of rankings, such that,

[a] MR(a)− LR(a) = K,

[b] LR(b)−MR(b) = K, and

[c] MR(c)− LR(c) = 0.

We should show that a %K b. First we note that when R only contains a single

ranking then this is a mere tautology, as that single ranking must be a %K b itself.

W.l.o.g. R contains only rankings of cases (i)-(iii), since rankings implied by reflexivity

or impartiality do not affect the calculus in [a], [b], and [c]. SupposeR contains rankings

of case (i), x %I1 y, . . . , x %Im y. Case (i) is closed to addition, hence x %I1+...+Im y

obtains. This last ranking can replace the previous ones in R without affecting the

calculus. Therefore, w.l.o.g. R contains no more than one ranking of case (i); and

similarly for (ii) and (iii).

Finally, suppose R contains more than one ranking, hence it involves more than

one case out of (i)-(iii). Then R must contain at least one instance where x is ranked

above y or z, and since x is never ranked below the others, it must be that a = x.

Similarly, it must be that b = y. Therefore, c = z, implying that a ranking of case

(ii) is counterbalanced by one of case (iii) in equation [c]. Yet this is impossible, as

the databases of cases (ii) and (iii) are disjoint. Thus, we are left with the tautological

form where R contains a single ranking.

To verify GS Continuity, we can check all pairs:

[1] ¬(x %I y) ⇐⇒ I(1) < I(2). For every such I and any database J , (nI + J)(1) <

(nI + J)(2), hence ¬(x %nI+J y), for n large enough.

[2] ¬(z %Q y) ⇐⇒
√

2 · Q(1) ≥ Q(2). However, there exists no database for

which
√

2 · Q(1) = Q(2), since Q(1), Q(2) are integers. Therefore, it is also true that

¬(z %Q y) ⇐⇒
√

2 ·Q(1) > Q(2), and the argument proceeds similarly to [1].

[3] ¬(x %J z) ⇐⇒ either J(1) > J(2) or
√

2 · J(1) < J(2), with the previous

argument for either one of these two conditions.

The remaining pair rankings either obtain everywhere (e.g., x %I x for every I) or only

at 0 (e.g., y %I x only when I = (0, 0)). Either way continuity follows immediately.
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We now prove that our relations violate A3, by showing that for, e.g., K = (10, 11)

A3 would imply that x %K y, while in fact ¬(x %K y). Denote αn = (10
√

2− 11) · n,

and define sequences of databases In = (bαnc , bαnc), Jn = (n,
⌊√

2 · n
⌋
), and Qn =

(n,
⌈√

2n
⌉
). Then x %In y, x %Jn z, and z %Qn y.

Denote νn = (
√

2− 1) · n. First, note that lim(Qn − Jn)/νn = (0, 0). Second, since

αn +n = (10 ·
√

2− 11 + 1) ·n = 10(
√

2− 1) ·n, and αn +
√

2 ·n = 11(
√

2− 1) ·n, then

lim(In + Jn)/νn = lim(In +Qn)/νn = (10, 11) = K.

Therefore, if we let Rn = {x %In y, x %Jn z, z %Qn y} and mn = bνnc, then

(MRn(x)− LRn(x)) /mn → K

(LRn(y)−MRn(y)) /mn → K

(MRn(z)− LRn(z)) /mn → 0

and since ¬(x %K y) we conclude that A3 is violated.
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