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Abstract

Maxmin Expected Utility was first axiomatized by Gilboa and Schmeidler [6] in an

Anscombe-Aumann setup [2] which includes exogenous probabilities. The model was

later axiomatized in a purely subjective setup, where no exogenous probabilities are

assumed. The purpose of this note is to show that in all these axiomatizations the only

assumptions that are needed are the basic ones that are used to extract a cardinal utility

function, together with the two typical Maxmin assumptions, Uncertainty Aversion and

Certainty Independence, applied only to 0.5 : 0.5 mixtures. For the purely subjective

characterizations this means that assumptions involving an unbounded number of variables

can be replaced with assumptions that involve only a finite number thereof.
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1 Introduction

Gilboa and Schmeidler [6] (GS) proposed an axiomatic characterization of a Maxmin Expected

Utility (MEU) decision maker, who evaluates alternatives according to their minimum

expected utility with respect to a set of prior probabilities. The characterization was

obtained in an Anscombe-Aumann setup [2] (as rephrased by Fishburn in [4]), namely in an

environment that contains both subjective and objective uncertainty. Later on, Casadesus-

Masanell, Klibanoff and Ozdenoren [3], Ghirardato, Maccheroni, Marinacci and Siniscalchi

[5] and Alon and Schmeidler [1] (AS) characterized the MEU decision rule in a framework

that includes only subjective uncertainty. All the MEU axiomatizations, the original one

and the three that followed, begin with a derivation of a cardinal utility over consequences.

All of them proceed with employing mixtures in order to obtain the desired representation.

In the original model, placed in the Anscombe-Aumann (AA) framework, the utility

extracted is a von-Neumann and Morgenstern [11] utility over lotteries, and the mixtures

employed are state-wise lottery mixtures. Two additional axioms that employ those mixtures

are imposed. The first is Uncertainty Aversion (due to Schmeidler, [9]), expressing a

preference of the decision maker toward hedging. Uncertainty Aversion states that when the

decision maker mixes an act g with an act f that is at least as preferred as g, the resulting

mixture is still at least as good as g. Uncertainty Aversion departs from Independence,

the main axiom characterizing expected utility decision making in an AA framework, by

allowing the decision maker to prefer the mixture of f and g to the more preferred act f ,

a preference that cannot be represented under Independence and Expected Utility. The

second GS axiom that employs mixtures is Certainty Independence, which asserts that

preference is preserved under mixtures with constant acts (i.e. with lotteries). In both

these axioms, mixtures of any proportion can be performed.

The other three papers mentioned above derive a representation in a setup that does

not contain objective probabilities, therefore lottery mixtures are not available. Instead,

a rich set of consequences is assumed. Each of the three papers utilizes this richness,

formulating its own set of assumptions that lead to the elicitation of a cardinal utility

over the set of consequences. Mixtures of consequences are then expressed in terms of

preference in different manners, where all methods are shown to imply mixtures of utilities

once the cardinal utility has been derived. Namely, in each of these methods the 0.5 : 0.5

preference mixture, for example, of two consequences x and z, is a consequence y that

satisfies u(y) = 0.5u(x) + 0.5u(z), u being the cardinal utility derived from preference.



To express mixtures (by any proportion) Casadesus-Masanell, Klibanoff and Ozdenoren

[3] employ the notion of a standard sequence, which is a sequence of consequences with a

constant preference-distance, as measured by two fixed consequences and a fixed event.1

Ghirardato, Maccheroni, Marinacci and Siniscalchi [5] employ preference midpoints which

are defined based on a mixing event and certainty equivalents, and use these midpoints for a

limiting definition of mixtures of any proportion. In AS an MEU representation is derived

in two different manners. One characterization relies on preference midpoints as in [5],

but only on midpoints, without the limiting definition. The other characterization employs

the construct of tradeoffs and the definition of tradeoff consistency as used by Wakker,

specifically definitions and results from Kobberling and Wakker [7].2 In all three papers,

the next step after identifying a notion of mixtures is analogous to GS, where Uncertainty

Aversion and Certainty Independence are formulated using the paper-specific mixtures, and

the representation follows.

It is by now a known fact that in the presence of a proper continuity condition Uncertainty

Aversion can be phrased using only 0.5 : 0.5 mixtures, and some of the papers mentioned

employ only such mixtures in the formulation of this condition. By contrast, all the MEU

models except for AS assume a Certainty Independence condition that involves mixtures

with any possible proportion, or at least any possible rational one. The axiomatization in

AS includes versions of Uncertainty Aversion and Certainty Independence that involve only

0.5 : 0.5 mixtures, however these two conditions are supplemented in AS by an additional

assumption, called Certainty Covariance. Certainty Covariance, together with the other

two axioms, is shown to imply the general-mixture version of Certainty Independence.

The purpose of this note is to show that Certainty Covariance, the third axiom used in

AS, in fact follows from Uncertainty Aversion and Certainty Independence in their 0.5 : 0.5

formulations. The characterization in AS can therefore be amended to include only the

basic axioms that are used to extract a cardinal utility function, together with the two

MEU-typical axioms, Uncertainty Aversion and Certainty Independence, applied only to

0.5 : 0.5 mixtures. Moreover, this result readily follows in all the other models. First,

their current Certainty Independence condition can be derived from its simpler 0.5 : 0.5

version using the same arguments, once a cardinal utility has been derived. Second, in GS,

1See Krantz et al [8] for an elaborate discussion of standard sequences.
2Tradeoffs serve as a tool for measuring and comparing preference-distances between pairs of

consequences. Wakker in several papers employs tradeoffs and different versions of consistency of tradeoff to
derive a variety of representations (such as Subjective Expected Utility, Choquet Expected Utility, Prospect
Theory) in purely subjective frameworks (see [7] as well as, e.g., [12] and [10]).
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where Certainty Independence is also employed for deriving an affine utility over lotteries,

its 0.5 : 0.5 version implies its general, α : 1− α version, if a proper continuity condition is

assumed.

Taking the number of variables involved in an axiom as a simple measure of its complexity,

weakening the MEU-typical axioms so that they refer only to 0.5 : 0.5 mixtures yields

axioms that are less complex compared to their general-mixture versions in [3] and [5]. The

idea of evaluating the complexity of axioms using the number of variables they involve,

or even more roughly, distinguishing between axioms that involve a bounded number of

variables and those that require an unbounded number, is discussed in detail in AS. If

that distinction is accepted, the purely-subjective counterparts of Uncertainty Aversion

and Certainty Independence that employ only 0.5 : 0.5 mixtures, and thus require a fixed

number of variables, are considerably less complex than their counterparts with general

mixtures, which require an unbounded number of variables (See Subsections 2.2 and 3.2 in

AS for a further explanation of these axioms and the number of variables they involve).

A characterization of an MEU decision maker that uses axioms that are as simple and

as transparent as possible is desirable, whether a normative or a descriptive role of such a

characterization is considered. From a descriptive stance, simpler axioms are easier to test.

On the other hand, when considering a normative interpretation, decision makers need to

understand the preference rules described in axioms in order to determine whether they

agree with them, and the less complex the axioms are, the easier it is to grasp them.

2 Result

In the four papers mentioned above the first step in the extraction of an MEU representation

is a derivation of a utility function over consequences, which is cardinally unique and linear

w.r.t. the model-specific mixtures considered.3 GS in the AA framework consider a vNM

utility function over lotteries, namely a utility which is linear w.r.t. probability mixtures of

lotteries.

In the purely subjective frameworks of the other three papers the set of consequences

is a connected topological space, and mixtures are defined in different manners based on

the richness of the consequences set. In [3] and in the first development in [1] mixtures

are based on the notion of standard sequences, or tradeoffs. In essence, both measure

preference distances using two fixed consequences and an event. According to these notions,

3Cardinal uniqueness requires an assumption of non degeneracy, which simply implies that trivial cases
are avoided.
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the preference distance between two pairs of consequences will be the same whenever there

are two consequences x, y and an event A such that in each of these pairs, receiving the

first consequence instead of the second on A exactly compensates for receiving x instead of

y outside of A. In [5] and in the second development in [1] mixtures are defined through

certainty equivalents, where the mixing uses a fixed event. In any case, eventually, after a

cardinal utility over the set of consequences is derived, all mixtures are shown to reduce to

utility mixtures. That is, the α : 1 − α mixture of two consequences x and z is another

consequence y that satisfies u(y) = αu(x) + (1− α)u(z).

This paper is concerned with the extraction of an MEU representation after a linear

utility has been appropriately derived. The first step of deriving the utility in the different

frameworks is therefore abstracted away, and attention is restricted to the problem phrased

already in utility space. The preference relation we consider is defined over functions from S

to a non-degenerate interval I ⊆ R, to be interpreted as the state-wise utility translation of

acts from the original models (I is the utilities’ image of the set of consequences, which can

be open or closed, finite or infinite, on either end). In the background there is an underlying

assumption that for every two consequences x and z and every proportion α ∈ [0, 1], there

exists a consequence which is both the α : 1− α utility mixture, and the α : 1− α model-

specific preference mixture of x and z.

The identification of model-specific and utility mixtures is true for GS, where any two

lotteries can be randomized by any α : 1 − α probabilities, yielding a lottery that is the

desired mixture and has a vNM utility which is the α : 1−α mixture of the vNM utilities of

the original lotteries. The equivalence between preference mixtures and utility mixtures also

holds for the purely subjective models of Casadesus-Masanell et al [3] and Ghirardato et al

[5]. In AS the identity of utility and model-specific mixtures holds for a restricted domain

of alternatives, on which the MEU representation is initially derived. The representation

is then extended to the entire domain by an attribute termed there Certainty Covariance,

which is shown below to be implied by Uncertainty Aversion and Certainty Independence

in their 0.5 : 0.5 versions. Thus for AS as well an MEU representation on the entire domain

of acts follows from the proof given here.

It should be noted that in GS, Certainty Independence in its general, α : 1 − α form,

is used to derive the affine utility function over lotteries, the stage that is omitted here.4

However, with a proper continuity condition (continuity in the weak topology), the 0.5 : 0.5

version of Certainty Independence implies its general version, and thus suffices to derive an

4I thank an anonymous referee for this comment.
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affine utility over lotteries. The proof is identical to that of Claim 1 in the next section. In

the other, purely subjective papers, general mixtures are not involved in the first stage of

deriving utilities over outcomes.

Formally, let S be a set of states and Σ a sigma algebra of events over S, and let I ⊆ R
be a non-degenerate interval. The set of alternatives is B0(I,Σ), the set of Σ-measurable

functions on S which assume finitely many values in I. For y ∈ I we denote by yS the

constant function which returns y for every state s ∈ S. A binary relation % is supposed

on B0(I,Σ). Four basic attributes are first assumed on % (All four are implied by the basic

axioms assumed in the four MEU models discussed, without the assumptions of Uncertainty

Aversion and Certainty Independence).

Weak Order. For any f, g ∈ B0(I,Σ), either f % g or g % f . For any f, g, h ∈ B0(I,Σ),

if f % g and g % h then f % h.

Monotonicity. For any f, g ∈ B0(I,Σ), f % g whenever f(s) ≥ g(s) for every s ∈ S.

It follows trivially that for two constant functions xS and yS , xS % yS if and only if x ≥ y.

Continuity. Let f, g, h ∈ B0(I,Σ) and fn ∈ B0(I,Σ) a sequence of functions that state-

wise converges to f . If fn % g for every n, then f % g, and if h % fn for every n, then h % f .

In each of the specific setups mentioned above, the AA setup or the purely subjective

setup, this form of continuity follows from the specific continuity axiom applied (either

Archimedeanity or topological continuity).

Non Degeneracy. There exist f, g ∈ B0(I,Σ) such that f � g.

Next, 0.5 : 0.5 mixtures are employed to formulate the MEU-specific assumptions,

Uncertainty Aversion and Certainty Independence. For f, g ∈ B0(I,Σ), the mixture 1
2f+ 1

2g

is an alternative h ∈ B0(I,Σ) such that for every s ∈ S, h(s) = 1
2f(s) + 1

2g(s). In all the

four MEU papers mentioned, the definition of mixtures through preferences reduces to the

definition used here once a utility over consequences is derived.

Uncertainty Aversion (UA). For f, g ∈ B0(I,Σ), if f % g then 1
2f + 1

2g % g.
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Certainty Independence (CI). For f, g ∈ B0(I,Σ) and a constant function yS , f % g if

and only if 1
2f + 1

2y
S % 1

2g + 1
2y

S .

Theorem 1. Let % be a binary relation over B0(I,Σ). Then the following two statements

are equivalent:

(i) % satisfies Weak Order, Monotonicity, Continuity, Non Degeneracy, Uncertainty

Aversion and Certainty Independence.

(ii) There exists a unique non-empty, closed and convex set C of additive probability

measures on Σ, such that, for all f, g ∈ B0(I,Σ),

f % g ⇔ min
P∈C

∫
S
fdP ≥ min

P∈C

∫
S
gdP . (1)

Remark 1. The theorem could be proved with Uncertainty Aversion and Certainty Independence

stated for λ : 1−λ mixtures for some fixed λ, not necessarily λ = 0.5. For that, these axioms

would need to be formulated so that their conclusions would hold for both λ : 1 − λ and

1− λ : λ mixtures, and the proof could then be repeated analogously.5

2.1 Proof

It is straightforward to see that (ii) implies the axioms in (i). We prove that the reverse

is also true. For that, note first that Weak Order, Continuity and Monotonicity imply

that each f ∈ B0(I,Σ) admits a certainty equivalent, i.e., a constant function xS such that

f ∼ xS . Next, applying Uncertainty Aversion consecutively implies that if f, g ∈ B0(I,Σ)

satisfy f % g, then k
2m f + (1− k

2m )g % g, for k,m ∈ N, k
2m ∈ [0, 1]. Continuity then yields

that the same is true for any α : 1 − α mixture of f and g (α ∈ [0, 1]). That is to say,

Uncertainty Aversion holds for any α : 1− α mixture.

Claim 1. Let xS , yS , wS be constant acts and α ∈ (0, 1). Then

xS % yS ⇐⇒ αxS + (1− α)wS % αyS + (1− α)wS .

5I thank an anonymous referee for suggesting this remark.
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Proof. First suppose that xS % yS . By Certainty Independence it follows that

1

2
xS +

1

2
wS %

1

2
yS +

1

2
wS . (2)

By applying Certainty Independence once more, mixing (2) with wS , it follows that

1
4x

S + 3
4w

S % 1
4y

S + 3
4w

S . On the other hand, if we mix xS into (2), followed by 1
2y

S + 1
2w

S ,

we obtain, 1
2

(
1
2x

S + 1
2w

S
)

+ 1
2x

S % 1
2

(
1
2y

S + 1
2w

S
)

+ 1
2x

S % 1
2

(
1
2y

S + 1
2w

S
)

+ 1
2y

S , that

is, 3
4x

S + 1
4w

S % 3
4y

S + 1
4w

S . We can repeat analogous steps to obtain that for every

k,m ∈ N, k
2m ∈ (0, 1), k

2mx
S + (1 − k

2m )wS % k
2m y

S + (1 − k
2m )wS . Continuity yields that

αxS + (1− α)wS % αyS + (1− α)wS .

Suppose that for two constant acts zS and tS , zS ∼ tS . Then according to the previous

paragraph, βzS + (1− β)wS ∼ βtS + (1− β)wS , for every β ∈ (0, 1). Finally suppose that

xS � yS . From the previous paragraph we know that αxS + (1−α)wS % αyS + (1−α)wS ,

but not necessarily with strict preference. However, repeating the same steps as above it

follows that for every k,m ∈ N, k
2m ∈ (0, 1), k

2mx
S + (1 − k

2m )wS � k
2m y

S + (1 − k
2m )wS .

Moreover, if αxS + (1 − α)wS ∼ αyS + (1 − α)wS , let k,m ∈ N be such that k
2m < α

and set β = k
α2m , hence by the previous argument, β(αxS + (1 − α)wS) + (1 − β)wS =

k
2mx

S +(1− k
2m )wS ∼ β(αyS +(1−α)wS)+(1−β)wS = k

2m y
S +(1− k

2m )wS . Contradiction.

Therefore αxS + (1− α)wS � αyS + (1− α)wS . �

Claim 2. Let f ∈ B0(I,Σ), xS a constant act such that f ∼ xS, and α ∈ (0, 1). If

g = αf + (1− α)xS, then g ∼ xS.

Proof. The claim is first proved for α = 1
2m , that is, when g = 1

2m f + (1 − 1
2m )xS . The

proof is by induction on m. For m = 1 the indifference follows by Certainty Independence.

Assume that for g = 1
2m f + (1 − 1

2m )xS , g ∼ x. Let h = 1
2m+1 f + (1 − 1

2m+1 )xS , then

h = 1
2g+ 1

2x
S , and g ∼ x by the induction assumption. Employing Certainty Independence

again implies h ∼ x.

Now let α = k
2m (k ∈ {2, . . . , 2m − 1}), so that g = k

2m f + (1− k
2m )xS . By Uncertainty

Aversion, g % x. We assume g � x and derive a contradiction.

Let g′ = 1
2g+ 1

2x
S , and let yS be a constant act such that g ∼ yS . Employing Certainty

Independence, g′ ∼ zS for y > z = x+y
2 > x, so g � g′ � xS . However, there exists an act

h such that h = αg + (1 − α)g′ and also h = 1
2m f + (1 − 1

2m )xS for some α ∈ (0, 1) and

some m ∈ N. By the previous paragraph, h ∼ xS . But Uncertainty Aversion requires that

h % g′, contradiction. Therefore if g = k
2m f + (1 − k

2m )xS then g ∼ xS . By continuity it

follows that the same is true for any α : 1− α combination of f and xS . �
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Claim 3. Let f, g ∈ B0(I,Σ) and xS and yS two constant functions. If 1
2f+ 1

2y
S ∼ 1

2g+ 1
2x

S,

then f ∼ xS if and only if g ∼ yS.

Proof. Suppose that 1
2f + 1

2y
S ∼ 1

2g + 1
2x

S and f ∼ xS . By Certainty Independence,

f ∼ xS implies 1
2f + 1

2y
S ∼ 1

2x
S + 1

2y
S . Suppose on the contrary that g � yS , then again

by Certainty Independence, 1
2g + 1

2x
S � 1

2y
S + 1

2x
S . Contradiction. If on the other hand

yS � g a contradiction is similarly implied since Certainty Independence now yields that

1
2y

S + 1
2x

S � 1
2g + 1

2x
S . �

Claim 4. Let f ∈ B0(I,Σ), wS , xS , yS constant functions, and α ∈ (0, 1) such that f ∼ xS

and y = αx+ (1− α)w. If h = αf + (1− α)wS, then h ∼ yS.

Proof. Let g = αf+(1−α)xS , then by Claim 2, g ∼ xS . In addition, h = αf+(1−α)wS =

g + yS − xS , that is, 1
2h+ 1

2x
S = 1

2g + 1
2y

S . As g ∼ xS , Claim 3 implies that h ∼ yS . �

Suppose f, g ∈ B0(I,Σ) and let xS and yS be constant functions such that f ∼ xS and

g ∼ yS . Then by Claim 4 for any constant function wS and any α ∈ (0, 1), αf+(1−α)wS ∼
αxS +(1−α)wS , and αg+(1−α)wS ∼ αyS +(1−α)wS . Employing also Claim 1 it follows

that:

f % g ⇐⇒ xS % yS ⇐⇒ αxS + (1− α)wS % αyS + (1− α)wS

⇐⇒ αf + (1− α)wS % αg + (1− α)wS .

Since certainty equivalents exist for all acts it is established that Certainty Independence

holds for any α : 1−α mixture. It follows that in all the MEU models mentioned Uncertainty

Aversion and Certainty Independence can be weakened to state their implication only with

regard to 0.5 : 0.5 mixtures. In AS, the assumption of Certainty Covariance (A8 in AS)

may be dropped, as a result of the above development and the remark below.

Remark 2. In AS, an assumption by the name Certainty Covariance (A8 in AS) is used

to extend the MEU representation from a sub-domain of alternatives on which it is initially

obtained to the domain of all the alternatives. In the setup and notation of this paper,

Certainty Covariance states that if, for f, g, xS , yS ∈ B0(I,Σ), f−g = xS−yS , then f ∼ xS

if and only if g ∼ yS . Since f − g = xS − yS is equivalent to
f + yS

2
=
g + xS

2
, Claim 3

implies this attribute and the MEU representation may be extended to the entire domain of

alternatives on the basis of the assumptions stated above, specifically Uncertainty Aversion

and Certainty Independence for 0.5 : 0.5 mixtures.
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